{"title":"Fast, three-dimensional, live-cell super-resolution imaging with multiplane structured illumination microscopy","authors":"Qian Chen, Wen Gou, Wenqing Lu, Jie Li, Yuhong Wei, Haoyu Li, Chengyu Wang, Wei You, Zhengqian Li, Dashan Dong, Xiuli Bi, Bin Xiao, Liangyi Chen, Kebin Shi, Junchao Fan, Xiaoshuai Huang","doi":"10.1038/s41566-025-01638-9","DOIUrl":null,"url":null,"abstract":"<p>Three-dimensional structured illumination microscopy (3D-SIM) doubles the spatial resolution along all dimensions and is used widely in cellular imaging. However, its temporal resolution is constrained by the need for sequential plane-by-plane movement of the sample using a piezo stage for imaging, which often increases the acquisition time to several seconds per volume. To address this limitation, we develop 3D multiplane SIM (3D-MP-SIM), which simultaneously detects multiplane images and reconstructs them using synergistically evolved reconstruction algorithms. Compared with conventional 3D-SIM imaging, 3D-MP-SIM achieves an approximately eightfold increase in the temporal resolution of volumetric super-resolution imaging, with lateral and axial spatial resolutions of about 120 and 300 nm, respectively. The rapid acquisition substantially reduces motion artefacts during the imaging of dynamic structures, such as late endosomes, in live cells. Moreover, we demonstrate the capabilities of 3D-MP-SIM via high-speed time-lapse volumetric imaging of the endoplasmic reticulum at rates of up to 11 volumes per second. We also show the feasibility of dual-colour imaging by observing rapid and close interactions among intra- and intercellular organelles in 3D space. These results highlight the potential of 3D-MP-SIM for explaining dynamic behaviours and interactions at the subcellular level and in three dimensions.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"84 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01638-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional structured illumination microscopy (3D-SIM) doubles the spatial resolution along all dimensions and is used widely in cellular imaging. However, its temporal resolution is constrained by the need for sequential plane-by-plane movement of the sample using a piezo stage for imaging, which often increases the acquisition time to several seconds per volume. To address this limitation, we develop 3D multiplane SIM (3D-MP-SIM), which simultaneously detects multiplane images and reconstructs them using synergistically evolved reconstruction algorithms. Compared with conventional 3D-SIM imaging, 3D-MP-SIM achieves an approximately eightfold increase in the temporal resolution of volumetric super-resolution imaging, with lateral and axial spatial resolutions of about 120 and 300 nm, respectively. The rapid acquisition substantially reduces motion artefacts during the imaging of dynamic structures, such as late endosomes, in live cells. Moreover, we demonstrate the capabilities of 3D-MP-SIM via high-speed time-lapse volumetric imaging of the endoplasmic reticulum at rates of up to 11 volumes per second. We also show the feasibility of dual-colour imaging by observing rapid and close interactions among intra- and intercellular organelles in 3D space. These results highlight the potential of 3D-MP-SIM for explaining dynamic behaviours and interactions at the subcellular level and in three dimensions.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.