Klaudia Borbényi-Galambos, Katalin Erdélyi, Tamás Ditrói, Eszter Petra Jurányi, Noémi Szántó, Réka Szatmári, Ágnes Czikora, Edward E. Schmidt, Dorottya Garai, Mihály Cserepes, Gabriella Liszkay, Erika Tóth, József Tóvári, Péter Nagy
{"title":"Realigned transsulfuration drives BRAF-V600E-targeted therapy resistance in melanoma","authors":"Klaudia Borbényi-Galambos, Katalin Erdélyi, Tamás Ditrói, Eszter Petra Jurányi, Noémi Szántó, Réka Szatmári, Ágnes Czikora, Edward E. Schmidt, Dorottya Garai, Mihály Cserepes, Gabriella Liszkay, Erika Tóth, József Tóvári, Péter Nagy","doi":"10.1016/j.cmet.2025.01.021","DOIUrl":null,"url":null,"abstract":"BRAF V600E-inhibition effectively treats melanoma, but acquired resistance rapidly develops. Protein expression profiles, mitochondrial energetics, metabolomics and fluxomics data in cell line, xenograft, and patient-derived xenograft systems revealed that concerted reprogramming of metabolic pathways (including glutaminolysis, glycolysis, TCA cycle, electron transport chain [ETC], and transsulfuration), along with an immediate cytoprotective response to drug-induced oxidative stress, underpins drug-tolerant persister cancer cell survival. Realignment of cysteine (Cys) metabolism, in particular an immediate upregulation of cystathionine-γ-lyase (CSE), was vital in persister cells. The oxidative cellular environment, drug-induced elevated cystine uptake and oxidative Cys catabolism, increased intracellular cystine/Cys ratios, thereby favoring cystine as a CSE substrate. This produces persulfides and hydrogen sulfide to protect protein thiols and support elevated energy demand in persister cells. Combining BRAF V600E inhibitors with CSE inhibitors effectively diminished proliferative relapse in culture models and increased progression-free survival of xenografted mice. This, together with induced CSE expression in patient samples under BRAF-V600E-inhibition, reveals an approach to increase BRAF-V600E-targeted therapeutic efficacy.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"34 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2025.01.021","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
BRAF V600E-inhibition effectively treats melanoma, but acquired resistance rapidly develops. Protein expression profiles, mitochondrial energetics, metabolomics and fluxomics data in cell line, xenograft, and patient-derived xenograft systems revealed that concerted reprogramming of metabolic pathways (including glutaminolysis, glycolysis, TCA cycle, electron transport chain [ETC], and transsulfuration), along with an immediate cytoprotective response to drug-induced oxidative stress, underpins drug-tolerant persister cancer cell survival. Realignment of cysteine (Cys) metabolism, in particular an immediate upregulation of cystathionine-γ-lyase (CSE), was vital in persister cells. The oxidative cellular environment, drug-induced elevated cystine uptake and oxidative Cys catabolism, increased intracellular cystine/Cys ratios, thereby favoring cystine as a CSE substrate. This produces persulfides and hydrogen sulfide to protect protein thiols and support elevated energy demand in persister cells. Combining BRAF V600E inhibitors with CSE inhibitors effectively diminished proliferative relapse in culture models and increased progression-free survival of xenografted mice. This, together with induced CSE expression in patient samples under BRAF-V600E-inhibition, reveals an approach to increase BRAF-V600E-targeted therapeutic efficacy.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.