Unraveling individual and combined toxicity of microplastics and tetracycline at environment-related concentrations to coral holobionts

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Shiqi Jiang, Lei He, Linglong Cao, Ruikun Sun, Zhenqing Dai, Yan-Qiu Liang, Lei Ren, Shengli Sun, Chengyong Li
{"title":"Unraveling individual and combined toxicity of microplastics and tetracycline at environment-related concentrations to coral holobionts","authors":"Shiqi Jiang, Lei He, Linglong Cao, Ruikun Sun, Zhenqing Dai, Yan-Qiu Liang, Lei Ren, Shengli Sun, Chengyong Li","doi":"10.1016/j.jhazmat.2025.137823","DOIUrl":null,"url":null,"abstract":"Coral holobionts constitute the foundational organisms of coral reef ecosystems. As an emerging pollutant, the projected accumulated levels of microplastics (MPs) are expected to continue increasing. Meanwhile, due to their properties, MPs can absorb multiple other marine pollutants, such as antibiotics (ATs). However, the co-toxicity mechanism of MPs and ATs to coral holobionts remains to be explored. Here, using <em>Zoanthus sociatus</em> as a model organism, we investigate the individual and combined toxicity of MPs and tetracycline (TC) at environment-related concentrations to coral holobionts. Microbiomics indicate that MPs and TC increase coral holobionts bacterial species richness while concurrently reducing the microbial community structure stability. The key metabolites and enzyme activity results demonstrated that the impacts of MPs and TC on corals encompassed antioxidant capacity, detoxification capability, immune function, and lipid metabolism. Transcriptomics shows that MPs and TC disrupt coral-algae relationships mainly through host nutrition limitation and inhibition of symbiotic algae carbon/nitrogen metabolism, respectively. A synergistic effect between MPs and TC has also been observed. In contrast, coral holobionts have shown adaptability through activating coral-symbiodiniaceae-bacteria interactions, mainly including: 1) enhancing the abundance of BMCs (beneficial microorganisms for corals); 2) enhancing host lipid accumulation; 3) immunoregulation; 4) symbiotic regulation. Overall, our findings provide new insights into the co-toxicity of MPs and TC, and highlight those MPs and TC at current environment concentration and predicted for most oceans in the coming decades, can ultimately cause coral bleaching.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"34 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137823","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Coral holobionts constitute the foundational organisms of coral reef ecosystems. As an emerging pollutant, the projected accumulated levels of microplastics (MPs) are expected to continue increasing. Meanwhile, due to their properties, MPs can absorb multiple other marine pollutants, such as antibiotics (ATs). However, the co-toxicity mechanism of MPs and ATs to coral holobionts remains to be explored. Here, using Zoanthus sociatus as a model organism, we investigate the individual and combined toxicity of MPs and tetracycline (TC) at environment-related concentrations to coral holobionts. Microbiomics indicate that MPs and TC increase coral holobionts bacterial species richness while concurrently reducing the microbial community structure stability. The key metabolites and enzyme activity results demonstrated that the impacts of MPs and TC on corals encompassed antioxidant capacity, detoxification capability, immune function, and lipid metabolism. Transcriptomics shows that MPs and TC disrupt coral-algae relationships mainly through host nutrition limitation and inhibition of symbiotic algae carbon/nitrogen metabolism, respectively. A synergistic effect between MPs and TC has also been observed. In contrast, coral holobionts have shown adaptability through activating coral-symbiodiniaceae-bacteria interactions, mainly including: 1) enhancing the abundance of BMCs (beneficial microorganisms for corals); 2) enhancing host lipid accumulation; 3) immunoregulation; 4) symbiotic regulation. Overall, our findings provide new insights into the co-toxicity of MPs and TC, and highlight those MPs and TC at current environment concentration and predicted for most oceans in the coming decades, can ultimately cause coral bleaching.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信