Yuanfu Li, Li Liu, Xiaoou Meng, Jingsi Qiu, Yanmei Liu, Feng Zhao, Huihua Tan
{"title":"Microplastics affect the nitrogen nutrition status of soybean by altering the nitrogen cycle in the rhizosphere soil","authors":"Yuanfu Li, Li Liu, Xiaoou Meng, Jingsi Qiu, Yanmei Liu, Feng Zhao, Huihua Tan","doi":"10.1016/j.jhazmat.2025.137803","DOIUrl":null,"url":null,"abstract":"Microplastics (MPs) are widely distributed in agricultural systems. However, studies on the comprehensive effects of MPs on nitrogen cycling in crop rhizosphere soil, and the changes this effect causes to crop growth is still limited. In this study, we investigated how three types of 5% MPs (polystyrene, PS; polyethylene, PE; polyvinyl chloride, PVC) affect soybean growth by altering rhizosphere soil nitrogen cycling. These MPs have no direct toxic effects on soybean under hydroponic conditions. However, under soil cultivation conditions, PE and PS promoted soybean growth and increased soybean roots nitrogen content and nitrogen assimilation enzyme activity, while PVC does the opposite. Further study found that PE and PS increased the inorganic nitrogen content, and the activity of nitrogen cycle-related enzymes and the abundance of genes and microorganism in rhizosphere soil. Meanwhile, PVC significantly reduced the inorganic nitrogen contents, inhibited the activity of nitrogen cycling related enzymes, and destroyed the microbial community structure in rhizosphere soil. More importantly, PVC significantly reduced the abundance of nitrogen cycle-related genes and microorganisms, and increased the abundance of viruses. These results indicated that PE and PS promote soybean growth by activating the nitrogen cycle in the rhizosphere soil and increasing the soil nitrogen content, whereas PVC inhibits soybean growth by disrupting the nitrogen cycle in the rhizosphere soil and reducing its nitrogen content.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"5 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137803","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) are widely distributed in agricultural systems. However, studies on the comprehensive effects of MPs on nitrogen cycling in crop rhizosphere soil, and the changes this effect causes to crop growth is still limited. In this study, we investigated how three types of 5% MPs (polystyrene, PS; polyethylene, PE; polyvinyl chloride, PVC) affect soybean growth by altering rhizosphere soil nitrogen cycling. These MPs have no direct toxic effects on soybean under hydroponic conditions. However, under soil cultivation conditions, PE and PS promoted soybean growth and increased soybean roots nitrogen content and nitrogen assimilation enzyme activity, while PVC does the opposite. Further study found that PE and PS increased the inorganic nitrogen content, and the activity of nitrogen cycle-related enzymes and the abundance of genes and microorganism in rhizosphere soil. Meanwhile, PVC significantly reduced the inorganic nitrogen contents, inhibited the activity of nitrogen cycling related enzymes, and destroyed the microbial community structure in rhizosphere soil. More importantly, PVC significantly reduced the abundance of nitrogen cycle-related genes and microorganisms, and increased the abundance of viruses. These results indicated that PE and PS promote soybean growth by activating the nitrogen cycle in the rhizosphere soil and increasing the soil nitrogen content, whereas PVC inhibits soybean growth by disrupting the nitrogen cycle in the rhizosphere soil and reducing its nitrogen content.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.