Su-Hang Cai, Li-Hua Wang, Zhi-Xuan Fan, Yong-Rui Xu, Lan Jiang, Xiang-Sen Wu, Jian-Feng Chen, Yong Luo
{"title":"Hydrodynamics and mass transfer characteristics of a single microbubble in liquids with different properties","authors":"Su-Hang Cai, Li-Hua Wang, Zhi-Xuan Fan, Yong-Rui Xu, Lan Jiang, Xiang-Sen Wu, Jian-Feng Chen, Yong Luo","doi":"10.1002/aic.18787","DOIUrl":null,"url":null,"abstract":"Microbubbles have great potential in enhancing gas-to-liquid mass transfer. However, there is still a lack of systematic research on how the liquid properties affect the hydrodynamics and mass transfer characteristics of a single microbubble. In this work, the diameter, velocity, and mass transfer of a single microbubble in liquids with different properties were analyzed by using high-speed photograph technology. It was found that the rise velocity was minimally affected by the surfactant but decreased with the increase of liquid viscosity. A new velocity correlation was developed to predict the rise velocities of microbubbles, with deviations within 20%. The addition of surfactants and increasing liquid viscosity both reduce the mass transfer coefficient (<i>k</i><sub>L</sub>) compared to ultrapure water. Conversely, <i>k</i><sub>L</sub> increased by 1.3 to 4.1 times as the reactant concentration increased in chemical absorption. This study provides meaningful data to understand the hydrodynamic behaviors and mass transfer characteristics of microbubbles.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"48 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18787","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microbubbles have great potential in enhancing gas-to-liquid mass transfer. However, there is still a lack of systematic research on how the liquid properties affect the hydrodynamics and mass transfer characteristics of a single microbubble. In this work, the diameter, velocity, and mass transfer of a single microbubble in liquids with different properties were analyzed by using high-speed photograph technology. It was found that the rise velocity was minimally affected by the surfactant but decreased with the increase of liquid viscosity. A new velocity correlation was developed to predict the rise velocities of microbubbles, with deviations within 20%. The addition of surfactants and increasing liquid viscosity both reduce the mass transfer coefficient (kL) compared to ultrapure water. Conversely, kL increased by 1.3 to 4.1 times as the reactant concentration increased in chemical absorption. This study provides meaningful data to understand the hydrodynamic behaviors and mass transfer characteristics of microbubbles.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.