A mathematical modeling study of the effectiveness of contact tracing in reducing the spread of infectious diseases with incubation period

IF 1.9 4区 数学 Q2 BIOLOGY
Mohamed Ladib , Cameron J. Browne , Hayriye Gulbudak , Aziz Ouhinou
{"title":"A mathematical modeling study of the effectiveness of contact tracing in reducing the spread of infectious diseases with incubation period","authors":"Mohamed Ladib ,&nbsp;Cameron J. Browne ,&nbsp;Hayriye Gulbudak ,&nbsp;Aziz Ouhinou","doi":"10.1016/j.mbs.2025.109415","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study an epidemic model with demography that incorporates some key aspects of the contact tracing intervention. We derive generic formulae for the effective reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> when contact tracing is employed to mitigate the spread of infection. The derived expressions are reformulated in terms of the initial reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> (in the absence of tracing), the number of traced cases caused by a primary untraced reported index case, and the average number of secondary cases infected by traced infectees during their infectious period. In parallel, under some restrictions, the local stability of the disease-free equilibrium is investigated. The model was fitted to data of Ebola disease collected during the 2014–2016 outbreaks in West Africa. Finally, numerical simulations are provided to investigate the effect of key parameters on <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>. By considering ongoing interventions, the simulations indicate whether contact tracing can suppress <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> below unity, as well as identify parameter regions where it can effectively contain epidemic outbreaks when applied with a given level of efficiency.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"383 ","pages":"Article 109415"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425000410","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study an epidemic model with demography that incorporates some key aspects of the contact tracing intervention. We derive generic formulae for the effective reproduction number Re when contact tracing is employed to mitigate the spread of infection. The derived expressions are reformulated in terms of the initial reproduction number R0 (in the absence of tracing), the number of traced cases caused by a primary untraced reported index case, and the average number of secondary cases infected by traced infectees during their infectious period. In parallel, under some restrictions, the local stability of the disease-free equilibrium is investigated. The model was fitted to data of Ebola disease collected during the 2014–2016 outbreaks in West Africa. Finally, numerical simulations are provided to investigate the effect of key parameters on Re. By considering ongoing interventions, the simulations indicate whether contact tracing can suppress Re below unity, as well as identify parameter regions where it can effectively contain epidemic outbreaks when applied with a given level of efficiency.
关于接触追踪在减少有潜伏期的传染病传播方面的有效性的数学模型研究。
在这项工作中,我们研究了一个包含接触者追踪干预的一些关键方面的人口统计学流行病模型。我们推导了采用接触者追踪以减轻感染传播时有效繁殖数Re的通用公式。导出的表达式重新表述为初始繁殖数R0(在没有追踪的情况下)、由未追踪的原发报告指示病例引起的追踪病例数以及在其感染期间被追踪的感染者感染的继发病例的平均数量。同时,在一定的限制条件下,研究了无病平衡的局部稳定性。该模型拟合了2014-2016年西非埃博拉疫情期间收集的数据。最后,提供了数值模拟来研究关键参数对Re的影响。通过考虑正在进行的干预,模拟表明接触者追踪是否可以将Re抑制在单位以下,以及在给定效率水平下识别可以有效控制流行病爆发的参数区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信