GLGW10 controls grain size associated with the lignin content in rice.

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Haolin Liu, Jinlong Ni, Yuhan Zhang, Yue Chen, Yanmin Luo, Yi Wang, Fei Shang, Yuke Yang, Rongfang Xu, Liyong Cao, Lilan Hong, Juan Xu, Yuanzhu Yang, Ming Zhou
{"title":"GLGW10 controls grain size associated with the lignin content in rice.","authors":"Haolin Liu, Jinlong Ni, Yuhan Zhang, Yue Chen, Yanmin Luo, Yi Wang, Fei Shang, Yuke Yang, Rongfang Xu, Liyong Cao, Lilan Hong, Juan Xu, Yuanzhu Yang, Ming Zhou","doi":"10.1016/j.jgg.2025.02.009","DOIUrl":null,"url":null,"abstract":"<p><p>Grain size, which encompasses length, width, and thickness, is a critical agricultural trait that influences both grain yield and quality in rice. Although numerous grain size regulators have been identified, the molecular mechanisms governing grain size and the lignin content remain largely elusive. In this study, we cloned and characterized GRAIN LENGTH AND GRAIN WIDTH 10 (GLGW10), a novel regulator of grain size in rice. Loss-of-function mutations in GLGW10 result in reduced grain size. GLGW10 encodes an evolutionarily conserved protein, the function of which has not been previously characterized in higher plants. Biochemical assays reveal that GLGW10 may interact with the transcription factor OsMYB108, which acts as a negative regulator of the lignin content. Knockout of OsMYB108 leads to longer and slender grain size, accompanied by increased lignin content, indicating that OsMYB108 negatively regulates both grain size and the lignin content. Analysis of natural variations and haplotypes in GLGW10 reveals an association with grain size, suggesting an artificial selection on GLGW10 during rice domestication. In summary, our findings identify novel regulators of grain size and elucidate potential mechanisms linking grain size and lignin metabolism in rice, thereby providing essential insights for improving crop yields.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.02.009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Grain size, which encompasses length, width, and thickness, is a critical agricultural trait that influences both grain yield and quality in rice. Although numerous grain size regulators have been identified, the molecular mechanisms governing grain size and the lignin content remain largely elusive. In this study, we cloned and characterized GRAIN LENGTH AND GRAIN WIDTH 10 (GLGW10), a novel regulator of grain size in rice. Loss-of-function mutations in GLGW10 result in reduced grain size. GLGW10 encodes an evolutionarily conserved protein, the function of which has not been previously characterized in higher plants. Biochemical assays reveal that GLGW10 may interact with the transcription factor OsMYB108, which acts as a negative regulator of the lignin content. Knockout of OsMYB108 leads to longer and slender grain size, accompanied by increased lignin content, indicating that OsMYB108 negatively regulates both grain size and the lignin content. Analysis of natural variations and haplotypes in GLGW10 reveals an association with grain size, suggesting an artificial selection on GLGW10 during rice domestication. In summary, our findings identify novel regulators of grain size and elucidate potential mechanisms linking grain size and lignin metabolism in rice, thereby providing essential insights for improving crop yields.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信