A computational spectrometer for the visible, near, and mid-infrared enabled by a single-spinning film encoder.

Junren Wen, Weiming Shi, Cheng Gao, Yujie Liu, Shuaibo Feng, Yu Shao, Haiqi Gao, Yuchuan Shao, Yueguang Zhang, Weidong Shen, Chenying Yang
{"title":"A computational spectrometer for the visible, near, and mid-infrared enabled by a single-spinning film encoder.","authors":"Junren Wen, Weiming Shi, Cheng Gao, Yujie Liu, Shuaibo Feng, Yu Shao, Haiqi Gao, Yuchuan Shao, Yueguang Zhang, Weidong Shen, Chenying Yang","doi":"10.1038/s44172-025-00379-5","DOIUrl":null,"url":null,"abstract":"<p><p>Computational spectrometers enable low-cost, in-situ, and rapid spectral analysis, with applications in chemistry, biology, and environmental science. Traditional filter-based spectral encoding approaches typically use filter arrays, complicating the manufacturing process and hindering device consistency. Here we propose a computational spectrometer spanning visible to mid-infrared by combining the Single-Spinning Film Encoder (SSFE) with a deep learning-based reconstruction algorithm. Optimization through particle swarm optimization (PSO) allows for low-correlation and high-complexity spectral responses under different polarizations and spinning angles. The spectrometer demonstrates single-peak resolutions of 0.5 nm, 2 nm, 10 nm, and dual-peak resolutions of 3 nm, 6 nm, 20 nm for the visible, near, and mid-infrared wavelength ranges. Experimentally, it shows an average MSE of 1.05 × 10⁻³ for narrowband spectral reconstruction in the visible wavelength range, with average center-wavelength and linewidth errors of 0.61 nm and 0.56 nm. Additionally, it achieves an overall 81.38% precision for the classification of 220 chemical compounds, showcasing its potential for compact, cost-effective spectroscopic solutions.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"37"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871129/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00379-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computational spectrometers enable low-cost, in-situ, and rapid spectral analysis, with applications in chemistry, biology, and environmental science. Traditional filter-based spectral encoding approaches typically use filter arrays, complicating the manufacturing process and hindering device consistency. Here we propose a computational spectrometer spanning visible to mid-infrared by combining the Single-Spinning Film Encoder (SSFE) with a deep learning-based reconstruction algorithm. Optimization through particle swarm optimization (PSO) allows for low-correlation and high-complexity spectral responses under different polarizations and spinning angles. The spectrometer demonstrates single-peak resolutions of 0.5 nm, 2 nm, 10 nm, and dual-peak resolutions of 3 nm, 6 nm, 20 nm for the visible, near, and mid-infrared wavelength ranges. Experimentally, it shows an average MSE of 1.05 × 10⁻³ for narrowband spectral reconstruction in the visible wavelength range, with average center-wavelength and linewidth errors of 0.61 nm and 0.56 nm. Additionally, it achieves an overall 81.38% precision for the classification of 220 chemical compounds, showcasing its potential for compact, cost-effective spectroscopic solutions.

利用单旋薄膜编码器实现的可见光、近红外和中红外计算光谱仪。
计算光谱仪实现了低成本、原位和快速光谱分析,可应用于化学、生物和环境科学领域。传统的基于滤光片的光谱编码方法通常使用滤光片阵列,使制造过程复杂化,并妨碍了设备的一致性。在这里,我们将单旋薄膜编码器(SSFE)与基于深度学习的重构算法相结合,提出了一种横跨可见光到中红外的计算光谱仪。通过粒子群优化(PSO)进行优化,可实现不同偏振和旋转角度下的低相关性和高复杂性光谱响应。该光谱仪在可见光、近红外和中红外波段的单峰分辨率分别为 0.5 nm、2 nm 和 10 nm,双峰分辨率分别为 3 nm、6 nm 和 20 nm。实验结果表明,在可见光波长范围内,窄带光谱重建的平均 MSE 为 1.05 × 10-³,平均中心波长和线宽误差分别为 0.61 nm 和 0.56 nm。此外,它对 220 种化合物进行分类的总体精确度达到 81.38%,展示了其作为紧凑型、高性价比光谱解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信