{"title":"A computational spectrometer for the visible, near, and mid-infrared enabled by a single-spinning film encoder.","authors":"Junren Wen, Weiming Shi, Cheng Gao, Yujie Liu, Shuaibo Feng, Yu Shao, Haiqi Gao, Yuchuan Shao, Yueguang Zhang, Weidong Shen, Chenying Yang","doi":"10.1038/s44172-025-00379-5","DOIUrl":null,"url":null,"abstract":"<p><p>Computational spectrometers enable low-cost, in-situ, and rapid spectral analysis, with applications in chemistry, biology, and environmental science. Traditional filter-based spectral encoding approaches typically use filter arrays, complicating the manufacturing process and hindering device consistency. Here we propose a computational spectrometer spanning visible to mid-infrared by combining the Single-Spinning Film Encoder (SSFE) with a deep learning-based reconstruction algorithm. Optimization through particle swarm optimization (PSO) allows for low-correlation and high-complexity spectral responses under different polarizations and spinning angles. The spectrometer demonstrates single-peak resolutions of 0.5 nm, 2 nm, 10 nm, and dual-peak resolutions of 3 nm, 6 nm, 20 nm for the visible, near, and mid-infrared wavelength ranges. Experimentally, it shows an average MSE of 1.05 × 10⁻³ for narrowband spectral reconstruction in the visible wavelength range, with average center-wavelength and linewidth errors of 0.61 nm and 0.56 nm. Additionally, it achieves an overall 81.38% precision for the classification of 220 chemical compounds, showcasing its potential for compact, cost-effective spectroscopic solutions.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"37"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871129/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00379-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Computational spectrometers enable low-cost, in-situ, and rapid spectral analysis, with applications in chemistry, biology, and environmental science. Traditional filter-based spectral encoding approaches typically use filter arrays, complicating the manufacturing process and hindering device consistency. Here we propose a computational spectrometer spanning visible to mid-infrared by combining the Single-Spinning Film Encoder (SSFE) with a deep learning-based reconstruction algorithm. Optimization through particle swarm optimization (PSO) allows for low-correlation and high-complexity spectral responses under different polarizations and spinning angles. The spectrometer demonstrates single-peak resolutions of 0.5 nm, 2 nm, 10 nm, and dual-peak resolutions of 3 nm, 6 nm, 20 nm for the visible, near, and mid-infrared wavelength ranges. Experimentally, it shows an average MSE of 1.05 × 10⁻³ for narrowband spectral reconstruction in the visible wavelength range, with average center-wavelength and linewidth errors of 0.61 nm and 0.56 nm. Additionally, it achieves an overall 81.38% precision for the classification of 220 chemical compounds, showcasing its potential for compact, cost-effective spectroscopic solutions.