Transfer learning reveals sequence determinants of the quantitative response to transcription factor dosage.

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2025-03-12 Epub Date: 2025-02-27 DOI:10.1016/j.xgen.2025.100780
Sahin Naqvi, Seungsoo Kim, Saman Tabatabaee, Anusri Pampari, Anshul Kundaje, Jonathan K Pritchard, Joanna Wysocka
{"title":"Transfer learning reveals sequence determinants of the quantitative response to transcription factor dosage.","authors":"Sahin Naqvi, Seungsoo Kim, Saman Tabatabaee, Anusri Pampari, Anshul Kundaje, Jonathan K Pritchard, Joanna Wysocka","doi":"10.1016/j.xgen.2025.100780","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning models have advanced our ability to predict cell-type-specific chromatin patterns from transcription factor (TF) binding motifs, but their application to perturbed contexts remains limited. We applied transfer learning to predict how concentrations of the dosage-sensitive TFs TWIST1 and SOX9 affect regulatory element (RE) chromatin accessibility in facial progenitor cells, achieving near-experimental accuracy. High-affinity motifs that allow for heterotypic TF co-binding and are concentrated at the center of REs buffer against quantitative changes in TF dosage and predict unperturbed accessibility. Conversely, low-affinity or homotypic binding motifs distributed throughout REs drive sensitive responses with minimal impact on unperturbed accessibility. Both buffering and sensitizing features display purifying selection signatures. We validated these sequence features through reporter assays and demonstrated that TF-nucleosome competition can explain low-affinity motifs' sensitizing effects. This combination of transfer learning and quantitative chromatin response measurements provides a novel approach for uncovering additional layers of the cis-regulatory code.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100780"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960506/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning models have advanced our ability to predict cell-type-specific chromatin patterns from transcription factor (TF) binding motifs, but their application to perturbed contexts remains limited. We applied transfer learning to predict how concentrations of the dosage-sensitive TFs TWIST1 and SOX9 affect regulatory element (RE) chromatin accessibility in facial progenitor cells, achieving near-experimental accuracy. High-affinity motifs that allow for heterotypic TF co-binding and are concentrated at the center of REs buffer against quantitative changes in TF dosage and predict unperturbed accessibility. Conversely, low-affinity or homotypic binding motifs distributed throughout REs drive sensitive responses with minimal impact on unperturbed accessibility. Both buffering and sensitizing features display purifying selection signatures. We validated these sequence features through reporter assays and demonstrated that TF-nucleosome competition can explain low-affinity motifs' sensitizing effects. This combination of transfer learning and quantitative chromatin response measurements provides a novel approach for uncovering additional layers of the cis-regulatory code.

迁移学习揭示了转录因子剂量定量反应的序列决定因素。
深度学习模型提高了我们从转录因子(TF)结合基序预测细胞类型特异性染色质模式的能力,但它们在扰动环境中的应用仍然有限。我们应用迁移学习来预测对剂量敏感的tf TWIST1和SOX9的浓度如何影响面部祖细胞中调节元件(RE)染色质的可及性,达到了接近实验的精度。高亲和性基序允许异型TF共结合,并集中在REs缓冲液的中心,以抵抗TF剂量的定量变化,并预测不受干扰的可及性。相反,分布在整个REs中的低亲和力或同型结合基序驱动敏感反应,对无扰动可及性的影响最小。缓冲和敏化功能都显示净化选择签名。我们通过报告基因分析验证了这些序列特征,并证明了tf -核小体竞争可以解释低亲和力基序的致敏作用。这种迁移学习和定量染色质响应测量的结合为揭示顺式调控代码的附加层提供了一种新颖的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信