The Seneca Valley virus 3C protease cleaves DCP1A to attenuate its antiviral effects.

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Jingjing Yang, Zijian Li, Ruiyi Ma, Shijie Xie, Dan Wang, Rong Quan, Xuexia Wen, Jiangwei Song
{"title":"The Seneca Valley virus 3C protease cleaves DCP1A to attenuate its antiviral effects.","authors":"Jingjing Yang, Zijian Li, Ruiyi Ma, Shijie Xie, Dan Wang, Rong Quan, Xuexia Wen, Jiangwei Song","doi":"10.1186/s13567-025-01477-0","DOIUrl":null,"url":null,"abstract":"<p><p>Seneca Valley virus (SVV), a new member of Picornaviridae, causes idiopathic vesicular symptoms in pregnant sows and acute death in neonatal piglets, considerably damaging the swine industry. The viral protease 3C (3C<sup>pro</sup>) cleaves host immune-related molecules to create a favorable environment for viral replication. In this study, we found that mRNA decapping enzyme 1A (DCP1A) is a novel antiviral effector against SVV infection that targets 3D viral RNA-dependent RNA polymerase for OPTN-mediated autophagic degradation. To counteract this effect, SVV 3C<sup>pro</sup> targets DCP1A for cleavage at glutamine 343 (Q343), resulting in the cleaved products DCP1A (1-343) and DCP1A (344-580), which lose the ability to restrict SVV replication. In contrast, the 3C cleavage-resistant DCP1A-Q343A mutant exhibited stronger antiviral effects than the wild-type DCP1A. Additionally, the degradation of the viral 3D protein targeted by DCP1A was abolished after its cleavage by SVV 3C<sup>pro</sup>. In conclusion, our study demonstrated that SVV 3C<sup>pro</sup> is a pivotal ISG antagonist that cleaves DCP1A. These results offer novel insight into how viruses evade host immunity.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"46"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869656/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-025-01477-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Seneca Valley virus (SVV), a new member of Picornaviridae, causes idiopathic vesicular symptoms in pregnant sows and acute death in neonatal piglets, considerably damaging the swine industry. The viral protease 3C (3Cpro) cleaves host immune-related molecules to create a favorable environment for viral replication. In this study, we found that mRNA decapping enzyme 1A (DCP1A) is a novel antiviral effector against SVV infection that targets 3D viral RNA-dependent RNA polymerase for OPTN-mediated autophagic degradation. To counteract this effect, SVV 3Cpro targets DCP1A for cleavage at glutamine 343 (Q343), resulting in the cleaved products DCP1A (1-343) and DCP1A (344-580), which lose the ability to restrict SVV replication. In contrast, the 3C cleavage-resistant DCP1A-Q343A mutant exhibited stronger antiviral effects than the wild-type DCP1A. Additionally, the degradation of the viral 3D protein targeted by DCP1A was abolished after its cleavage by SVV 3Cpro. In conclusion, our study demonstrated that SVV 3Cpro is a pivotal ISG antagonist that cleaves DCP1A. These results offer novel insight into how viruses evade host immunity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信