Bonnie L Quigley, Nathan Wellington, Jacob M Levenstein, Megan Dutton, Ana P Bouças, Grace Forsyth, Cyrana C Gallay, Maryam Hajishafiee, Ciara Treacy, Jim Lagopoulos, Sophie C Andrews, Adem T Can, Daniel F Hermens
{"title":"Circulating biomarkers and neuroanatomical brain structures differ in older adults with and without post-traumatic stress disorder.","authors":"Bonnie L Quigley, Nathan Wellington, Jacob M Levenstein, Megan Dutton, Ana P Bouças, Grace Forsyth, Cyrana C Gallay, Maryam Hajishafiee, Ciara Treacy, Jim Lagopoulos, Sophie C Andrews, Adem T Can, Daniel F Hermens","doi":"10.1038/s41598-025-91840-0","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to advance post-traumatic stress disorder (PTSD) understanding in older adults (48-77 years) by determining if circulating cytokines (IL-1β, IL-2, IL-4, IL-6, IL-12p70, IL17A and TNFα), brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF-A) and neuroanatomical brain volumes (grey and white matter, hippocampus, and amygdala) significantly differed in those with versus without PTSD. While none of the tested cytokines showed a significant difference, serum BDNF and VEGF-A levels were found to be significantly higher in the PTSD cohort. The assay used for BDNF quantification was important, with differences in general BDNF detected, but not when pro- and mature BDNF were measured specifically. Additionally, BDNF genotyping revealed a significant difference in Val66Met genotype distribution by PTSD diagnosis, with Val66Met carriers generally having lower circulating levels of BDNF compared to their Val66Val counterparts, regardless of PTSD diagnosis. Neuroanatomically, an all-female subset was examined to find total grey and white matter volumes and left and right hippocampal volumes were significantly smaller in those with PTSD. Collectively, these results show that both novel (VEGF-A) and established targets (BDNF and neuroimaging) may serve as useful biomarkers for older adults with PTSD.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7176"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91840-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to advance post-traumatic stress disorder (PTSD) understanding in older adults (48-77 years) by determining if circulating cytokines (IL-1β, IL-2, IL-4, IL-6, IL-12p70, IL17A and TNFα), brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF-A) and neuroanatomical brain volumes (grey and white matter, hippocampus, and amygdala) significantly differed in those with versus without PTSD. While none of the tested cytokines showed a significant difference, serum BDNF and VEGF-A levels were found to be significantly higher in the PTSD cohort. The assay used for BDNF quantification was important, with differences in general BDNF detected, but not when pro- and mature BDNF were measured specifically. Additionally, BDNF genotyping revealed a significant difference in Val66Met genotype distribution by PTSD diagnosis, with Val66Met carriers generally having lower circulating levels of BDNF compared to their Val66Val counterparts, regardless of PTSD diagnosis. Neuroanatomically, an all-female subset was examined to find total grey and white matter volumes and left and right hippocampal volumes were significantly smaller in those with PTSD. Collectively, these results show that both novel (VEGF-A) and established targets (BDNF and neuroimaging) may serve as useful biomarkers for older adults with PTSD.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.