{"title":"Fine mapping of stripe rust resistance gene YrAn1589 in common wheat using Wheat660K SNP array and BSR-Seq.","authors":"Weihao Hao, Yingjie Wu, Qi Guo, Jingchun Wu, Meng Lin, Qiwei Hu, Erwin Tandayu, Jie Lu, Hongqi Si, Chuanxi Ma, Xiaobo Wang, Can Chen","doi":"10.1007/s00122-025-04838-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>A new stripe rust resistance gene YrAn1589 in Chinese wheat Annong1589 was mapped to a 160.9-166.6 kb interval on chromosome arm 3BL and co-segregated with a marker CAPS9 developed from candidate gene TraesCS3B03G1054600. Stripe rust, caused by Puccinia. striiformis f. sp. tritici (Pst), is a devastating fungal disease that can significantly reduce wheat yield. The Chinese wheat cultivar Annong1589 demonstrates high resistance against the predominant Pst races in the Huang-Huai valley wheat region. The present study aimed to identify the stripe rust resistance gene in Annong1589. Genetic analysis indicated that the resistance in Annong1589 was conferred by a single dominant gene, provisionally designated YrAn1589. Using Wheat660K SNP array, bulked segregant RNA sequencing and new molecular markers developed, the resistance gene was mapped to a 160.9-166.6 kb region between CAPS8 and CAPS10 on chromosome 3BL based on IWGSC CS RefSeq v2.1 and eight other reference genome sequences, including eight high-confidence annotated genes. Transcriptome and qRT-PCR analyses revealed significantly upregulated expression of TraesCS3B03G1054600 in resistant plants following CYR32 inoculation, suggesting it is a potential candidate gene for YrAn1589. A functional marker CAPS9 developed from a A/G polymorphic SNP in the candidate co-segregated with YrAn1589 in the F<sub>2</sub> population. Subcellular localization experiments showed that TraesCS3B03G1054600 protein was localized in the cytoplasm and nucleus, implying its role in immune response and resistance. Our findings establish YrAn1589 as a new stripe rust resistance gene, providing valuable gene resource and molecular markers for improvement of stripe rust resistance in wheat.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 3","pages":"63"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04838-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: A new stripe rust resistance gene YrAn1589 in Chinese wheat Annong1589 was mapped to a 160.9-166.6 kb interval on chromosome arm 3BL and co-segregated with a marker CAPS9 developed from candidate gene TraesCS3B03G1054600. Stripe rust, caused by Puccinia. striiformis f. sp. tritici (Pst), is a devastating fungal disease that can significantly reduce wheat yield. The Chinese wheat cultivar Annong1589 demonstrates high resistance against the predominant Pst races in the Huang-Huai valley wheat region. The present study aimed to identify the stripe rust resistance gene in Annong1589. Genetic analysis indicated that the resistance in Annong1589 was conferred by a single dominant gene, provisionally designated YrAn1589. Using Wheat660K SNP array, bulked segregant RNA sequencing and new molecular markers developed, the resistance gene was mapped to a 160.9-166.6 kb region between CAPS8 and CAPS10 on chromosome 3BL based on IWGSC CS RefSeq v2.1 and eight other reference genome sequences, including eight high-confidence annotated genes. Transcriptome and qRT-PCR analyses revealed significantly upregulated expression of TraesCS3B03G1054600 in resistant plants following CYR32 inoculation, suggesting it is a potential candidate gene for YrAn1589. A functional marker CAPS9 developed from a A/G polymorphic SNP in the candidate co-segregated with YrAn1589 in the F2 population. Subcellular localization experiments showed that TraesCS3B03G1054600 protein was localized in the cytoplasm and nucleus, implying its role in immune response and resistance. Our findings establish YrAn1589 as a new stripe rust resistance gene, providing valuable gene resource and molecular markers for improvement of stripe rust resistance in wheat.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.