{"title":"Integrating convolutional layers and biformer network with forward-forward and backpropagation training.","authors":"Ali Kianfar, Parvin Razzaghi, Zahra Asgari","doi":"10.1038/s41598-025-92218-y","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate molecular property prediction is crucial for drug discovery and computational chemistry, facilitating the identification of promising compounds and accelerating therapeutic development. Traditional machine learning falters with high-dimensional data and manual feature engineering, while existing deep learning approaches may not capture complex molecular structures, leaving a research gap. We introduce Deep-CBN, a novel framework designed to enhance molecular property prediction by capturing intricate molecular representations directly from raw data, thus improving accuracy and efficiency. Our methodology combines convolutional neural networks (CNNs) with a BiFormer attention mechanism, employing both the forward-forward algorithm and backpropagation. The model operates in three stages: (1) feature learning, extracting local features from SMILES strings using CNNs; (2) attention refinement, capturing global context with a BiFormer module enhanced by the forward-forward algorithm; and (3) prediction subnetwork tuning, fine-tuning via backpropagation. Evaluations on benchmark datasets-including Tox21, BBBP, SIDER, ClinTox, BACE, HIV, and MUV-show that Deep-CBN achieves near-perfect ROC-AUC scores, significantly outperforming state-of-the-art methods. These findings demonstrate its effectiveness in capturing complex molecular patterns, offering a robust tool to accelerate drug discovery processes.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7230"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92218-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate molecular property prediction is crucial for drug discovery and computational chemistry, facilitating the identification of promising compounds and accelerating therapeutic development. Traditional machine learning falters with high-dimensional data and manual feature engineering, while existing deep learning approaches may not capture complex molecular structures, leaving a research gap. We introduce Deep-CBN, a novel framework designed to enhance molecular property prediction by capturing intricate molecular representations directly from raw data, thus improving accuracy and efficiency. Our methodology combines convolutional neural networks (CNNs) with a BiFormer attention mechanism, employing both the forward-forward algorithm and backpropagation. The model operates in three stages: (1) feature learning, extracting local features from SMILES strings using CNNs; (2) attention refinement, capturing global context with a BiFormer module enhanced by the forward-forward algorithm; and (3) prediction subnetwork tuning, fine-tuning via backpropagation. Evaluations on benchmark datasets-including Tox21, BBBP, SIDER, ClinTox, BACE, HIV, and MUV-show that Deep-CBN achieves near-perfect ROC-AUC scores, significantly outperforming state-of-the-art methods. These findings demonstrate its effectiveness in capturing complex molecular patterns, offering a robust tool to accelerate drug discovery processes.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.