In vivo transplantation of mammalian vascular organoids onto the chick chorioallantoic membrane reveals the formation of a hierarchical vascular network.
William J Kowalski, Shravani Vatti, Tyler Sakamoto, Wenling Li, Sarah Rose Odutola, Chengyu Liu, Guibin Chen, Manfred Boehm, Yoh-Suke Mukouyama
{"title":"In vivo transplantation of mammalian vascular organoids onto the chick chorioallantoic membrane reveals the formation of a hierarchical vascular network.","authors":"William J Kowalski, Shravani Vatti, Tyler Sakamoto, Wenling Li, Sarah Rose Odutola, Chengyu Liu, Guibin Chen, Manfred Boehm, Yoh-Suke Mukouyama","doi":"10.1038/s41598-025-91826-y","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic remodeling of the nascent vascular network into a mature hierarchy is essential for embryo survival. Cell behaviors and signaling mechanisms are often investigated with animal models and perfused microchannels, giving insights into this process. To support these studies and enrich our understanding, we demonstrate a complementary approach using vascular organoids. Organoids initially form a primitive endothelial plexus lined with NG2<sup>+</sup>/PDGFRβ<sup>+</sup> mural cell progenitors containing immature pericytes, but there is no formation of large-diameter vessels covered with αSMA<sup>+</sup> cells containing immature vascular smooth muscle cells (vSMCs). After transplantation to the chick chorioallantoic membrane, the network reorganizes into a branched architecture with large-diameter vessels covered by αSMA<sup>+</sup> cells. We additionally show that blood flow from the host circulation perfuses the organoid. Compared with the developing skin vasculature in mouse embryos, organoids successfully recapitulate vascular morphogenesis, both in vitro and after transplantation. The model described here presents a further approach to enhance the study of vascular remodeling.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7150"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91826-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic remodeling of the nascent vascular network into a mature hierarchy is essential for embryo survival. Cell behaviors and signaling mechanisms are often investigated with animal models and perfused microchannels, giving insights into this process. To support these studies and enrich our understanding, we demonstrate a complementary approach using vascular organoids. Organoids initially form a primitive endothelial plexus lined with NG2+/PDGFRβ+ mural cell progenitors containing immature pericytes, but there is no formation of large-diameter vessels covered with αSMA+ cells containing immature vascular smooth muscle cells (vSMCs). After transplantation to the chick chorioallantoic membrane, the network reorganizes into a branched architecture with large-diameter vessels covered by αSMA+ cells. We additionally show that blood flow from the host circulation perfuses the organoid. Compared with the developing skin vasculature in mouse embryos, organoids successfully recapitulate vascular morphogenesis, both in vitro and after transplantation. The model described here presents a further approach to enhance the study of vascular remodeling.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.