Ling Peng, Xi Chen, An-Qun Wang, Gang Xie, Bin Zhang, Jia-Fu Feng
{"title":"Insulin like growth factor binding protein 7 activate JNK/ERK signaling to aggravate uranium-induced renal cell cytotoxicity.","authors":"Ling Peng, Xi Chen, An-Qun Wang, Gang Xie, Bin Zhang, Jia-Fu Feng","doi":"10.1007/s00210-025-03923-4","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) can occur primarily by exposing kidneys to uranium (U). Insulin-like growth factor binding protein 7 (IGFBP7) can regulate sepsis-induced AKI and epithelial-mesenchymal transition through ERK1/2 signaling. In vitro, the IGFBP7's role and mechanism of action in uranium-induced NRK-52E cells, however, remains unknown. To evaluate the effect of U exposure on kidneys, rat kidney proximal cell line NRK-52E was treated with different concentrations (200, 400, and 800 µmol/L) of it. Subsequently, three siRNAs targeting IGFBP7 were transfected with the HiPerFect reagent. The role of the JNK/ERK signaling pathway in uranium-induced kidney cytotoxicity was examined by a series of cell function experiments, including CCK-8 assay, TUNEL staining, RT-qPCR, Western blot, and flow cytometry analysis. Uranium inhibited NRK-52E cell viability and enhanced IGFBP7 expression in a dose-dependent manner. Silencing of IGFBP7 promoted cell cycle progression and inhibited cell apoptosis of uranium-treated cells. Mechanistically, silencing of IGFBP7 inhibited the uranium-activated JNK/ERK signaling pathway. The ERK1/2 signaling inhibitor PD98059 suppressed the IGFBP7-activated JNK/ERK signaling pathway. Furthermore, knockdown of IGFBP7 exerted a similar effect with PD98059 on uranium-induced NRK-52E cell cycle arrest and apoptosis. Silencing IGFBP7 inhibited the JNK/ERK signaling pathway to attenuate uranium-induced cytotoxicity and necrosis of NRK-52E cells.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-03923-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute kidney injury (AKI) can occur primarily by exposing kidneys to uranium (U). Insulin-like growth factor binding protein 7 (IGFBP7) can regulate sepsis-induced AKI and epithelial-mesenchymal transition through ERK1/2 signaling. In vitro, the IGFBP7's role and mechanism of action in uranium-induced NRK-52E cells, however, remains unknown. To evaluate the effect of U exposure on kidneys, rat kidney proximal cell line NRK-52E was treated with different concentrations (200, 400, and 800 µmol/L) of it. Subsequently, three siRNAs targeting IGFBP7 were transfected with the HiPerFect reagent. The role of the JNK/ERK signaling pathway in uranium-induced kidney cytotoxicity was examined by a series of cell function experiments, including CCK-8 assay, TUNEL staining, RT-qPCR, Western blot, and flow cytometry analysis. Uranium inhibited NRK-52E cell viability and enhanced IGFBP7 expression in a dose-dependent manner. Silencing of IGFBP7 promoted cell cycle progression and inhibited cell apoptosis of uranium-treated cells. Mechanistically, silencing of IGFBP7 inhibited the uranium-activated JNK/ERK signaling pathway. The ERK1/2 signaling inhibitor PD98059 suppressed the IGFBP7-activated JNK/ERK signaling pathway. Furthermore, knockdown of IGFBP7 exerted a similar effect with PD98059 on uranium-induced NRK-52E cell cycle arrest and apoptosis. Silencing IGFBP7 inhibited the JNK/ERK signaling pathway to attenuate uranium-induced cytotoxicity and necrosis of NRK-52E cells.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.