Bayesian network modelling for predicting the environmental hazard of silver nanomaterials in soils.

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Irini Furxhi, Sarah Roberts, Richard Cross, Elise Morel, Anna Costa, Elma Lahive
{"title":"Bayesian network modelling for predicting the environmental hazard of silver nanomaterials in soils.","authors":"Irini Furxhi, Sarah Roberts, Richard Cross, Elise Morel, Anna Costa, Elma Lahive","doi":"10.1016/j.impact.2025.100553","DOIUrl":null,"url":null,"abstract":"<p><p>In alignment with the European Union's Green Deal, which directs safe and sustainable practices for all chemicals, including nanomaterials (NMs) and advanced materials (AdMa), this study addresses the environmental hazard of silver NMs to terrestrial ecosystems. In the context of safe and sustainable by design (SSbD) framework, there is a need for methodologies that integrate pHysicochemical characteristics and experimental conditions to reliably predict their hazards to exposed species. Bayesian Networks (BN) represent a pivotal machine-learning (ML) tool with the potential to accelerate the SSbD process by leveraging predictive capabilities. In this study, we employed BN models trained on a literature-derived dataset capturing the ecotoxicity of silver (Ag) NMs in soils, focusing on predicting chronic no-observed effect concentrations (chronic NOECs). The model incorporates physicochemical characteristics such as surface coating, nominal particle diameter and particle shape as provided by manufacturers, species information such as life stage and taxonomic class, and exposure medium characteristics. The BN, refined through expert insights, achieved an average predictive accuracy of approximately 82 % across the output labels. The study also extracted interpretable rules from the BN, outlining environmental safety criteria and identified key factors influencing NM hazard for terrestrial organisms. The critical need for experimental datasets that provide fuller details of physiochemical characteristics and experimental conditions, as well as current limitations, are highlighted. This modelling approach facilitates the rapid screening of the potential hazards of AgNMs to terrestrial ecosystems, with the potential to accelerate safety evaluations and rationalise experimental demands.</p>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":" ","pages":"100553"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.impact.2025.100553","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In alignment with the European Union's Green Deal, which directs safe and sustainable practices for all chemicals, including nanomaterials (NMs) and advanced materials (AdMa), this study addresses the environmental hazard of silver NMs to terrestrial ecosystems. In the context of safe and sustainable by design (SSbD) framework, there is a need for methodologies that integrate pHysicochemical characteristics and experimental conditions to reliably predict their hazards to exposed species. Bayesian Networks (BN) represent a pivotal machine-learning (ML) tool with the potential to accelerate the SSbD process by leveraging predictive capabilities. In this study, we employed BN models trained on a literature-derived dataset capturing the ecotoxicity of silver (Ag) NMs in soils, focusing on predicting chronic no-observed effect concentrations (chronic NOECs). The model incorporates physicochemical characteristics such as surface coating, nominal particle diameter and particle shape as provided by manufacturers, species information such as life stage and taxonomic class, and exposure medium characteristics. The BN, refined through expert insights, achieved an average predictive accuracy of approximately 82 % across the output labels. The study also extracted interpretable rules from the BN, outlining environmental safety criteria and identified key factors influencing NM hazard for terrestrial organisms. The critical need for experimental datasets that provide fuller details of physiochemical characteristics and experimental conditions, as well as current limitations, are highlighted. This modelling approach facilitates the rapid screening of the potential hazards of AgNMs to terrestrial ecosystems, with the potential to accelerate safety evaluations and rationalise experimental demands.

求助全文
约1分钟内获得全文 求助全文
来源期刊
NanoImpact
NanoImpact Social Sciences-Safety Research
CiteScore
11.00
自引率
6.10%
发文量
69
审稿时长
23 days
期刊介绍: NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信