Ming-Wei Liu, Wei-Chen Hsu, Tzu-Yang Chiang, Che-Wei Tsai, Karin A Dahmen
{"title":"Nonequilibrium phase diagram for the serration statistics during slow deformation of refractory high-entropy alloys.","authors":"Ming-Wei Liu, Wei-Chen Hsu, Tzu-Yang Chiang, Che-Wei Tsai, Karin A Dahmen","doi":"10.1038/s41598-025-90338-z","DOIUrl":null,"url":null,"abstract":"<p><p>Diverse slip behaviors are observed in HfNbTaTiZr refractory high-entropy alloy during tensile tests. Slow-avalanche and fast-runaway phases are identified by analyzing scaling relationships among slip statistics. Slow avalanches display a scaling collapse in temporal shapes, aligning with mean-field slip theory, while system-spanning fast-runaway avalanches show a Gaussian shape, indicating rapid nucleation due to dynamic weakening. Through time scale analysis, we construct a nonequilibrium phase diagram elucidating the influence of temperature and strain rate variations on solute-dislocation interaction.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7194"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-90338-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Diverse slip behaviors are observed in HfNbTaTiZr refractory high-entropy alloy during tensile tests. Slow-avalanche and fast-runaway phases are identified by analyzing scaling relationships among slip statistics. Slow avalanches display a scaling collapse in temporal shapes, aligning with mean-field slip theory, while system-spanning fast-runaway avalanches show a Gaussian shape, indicating rapid nucleation due to dynamic weakening. Through time scale analysis, we construct a nonequilibrium phase diagram elucidating the influence of temperature and strain rate variations on solute-dislocation interaction.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.