Establishment and validation of a dynamic nomogram to predict short-term prognosis and benefit of human immunoglobulin therapy in patients with novel bunyavirus sepsis in a population analysis study: a multicenter retrospective study.

IF 4 3区 医学 Q2 VIROLOGY
Kai Yang, Bin Quan, Lingyan Xiao, Jianghua Yang, Dongyang Shi, Yongfu Liu, Jun Chen, Daguang Cui, Ying Zhang, Jianshe Xu, Qi Yuan, Yishan Zheng
{"title":"Establishment and validation of a dynamic nomogram to predict short-term prognosis and benefit of human immunoglobulin therapy in patients with novel bunyavirus sepsis in a population analysis study: a multicenter retrospective study.","authors":"Kai Yang, Bin Quan, Lingyan Xiao, Jianghua Yang, Dongyang Shi, Yongfu Liu, Jun Chen, Daguang Cui, Ying Zhang, Jianshe Xu, Qi Yuan, Yishan Zheng","doi":"10.1186/s12985-025-02651-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to develop a dynamic nomogram model using machine learning to improve short-term prognosis prediction and identify patients who would benefit from intravenous immunoglobulin (IVIG) therapy.</p><p><strong>Methods: </strong>A multicenter retrospective study was conducted on 396 patients diagnosed with SFTS. Univariate and multivariate Cox regression analyses identified significant predictors of mortality. Machine learning models, including Random Survival Forest, Stepwise Cox Modeling, and Lasso Cox Regression, were compared for their predictive performance. The optimal model, incorporating consciousness, LDH, AST, and age, was used to construct a dynamic nomogram. The nomogram's performance was validated in training, validation, and external test sets. Additionally, the impact of IVIG therapy on survival was assessed within high-risk groups identified by the nomogram.</p><p><strong>Results: </strong>The dynamic nomogram demonstrated excellent predictive performance with an AUC of 0.903 in the training set, 0.933 in the validation set, and 0.852 in the test set, outperforming SOFA and APACHE II scores. Calibration curves confirmed the model's accuracy. In the high-risk group, the hazard ratio (HR) for death for those who injected immunoglobulin versus those who did not was 0.569 (95% CI 0.330-0.982) in the nomogram model.</p><p><strong>Conclusion: </strong>The dynamic nomogram effectively predicts short-term prognosis and identifies the population that benefits from IVIG therapy in patients with novel bunyavirus sepsis. This tool can aid clinicians in risk stratification and personalized treatment decisions, potentially improving patient outcomes.</p>","PeriodicalId":23616,"journal":{"name":"Virology Journal","volume":"22 1","pages":"51"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12985-025-02651-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aims to develop a dynamic nomogram model using machine learning to improve short-term prognosis prediction and identify patients who would benefit from intravenous immunoglobulin (IVIG) therapy.

Methods: A multicenter retrospective study was conducted on 396 patients diagnosed with SFTS. Univariate and multivariate Cox regression analyses identified significant predictors of mortality. Machine learning models, including Random Survival Forest, Stepwise Cox Modeling, and Lasso Cox Regression, were compared for their predictive performance. The optimal model, incorporating consciousness, LDH, AST, and age, was used to construct a dynamic nomogram. The nomogram's performance was validated in training, validation, and external test sets. Additionally, the impact of IVIG therapy on survival was assessed within high-risk groups identified by the nomogram.

Results: The dynamic nomogram demonstrated excellent predictive performance with an AUC of 0.903 in the training set, 0.933 in the validation set, and 0.852 in the test set, outperforming SOFA and APACHE II scores. Calibration curves confirmed the model's accuracy. In the high-risk group, the hazard ratio (HR) for death for those who injected immunoglobulin versus those who did not was 0.569 (95% CI 0.330-0.982) in the nomogram model.

Conclusion: The dynamic nomogram effectively predicts short-term prognosis and identifies the population that benefits from IVIG therapy in patients with novel bunyavirus sepsis. This tool can aid clinicians in risk stratification and personalized treatment decisions, potentially improving patient outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Virology Journal
Virology Journal 医学-病毒学
CiteScore
7.40
自引率
2.10%
发文量
186
审稿时长
1 months
期刊介绍: Virology Journal is an open access, peer reviewed journal that considers articles on all aspects of virology, including research on the viruses of animals, plants and microbes. The journal welcomes basic research as well as pre-clinical and clinical studies of novel diagnostic tools, vaccines and anti-viral therapies. The Editorial policy of Virology Journal is to publish all research which is assessed by peer reviewers to be a coherent and sound addition to the scientific literature, and puts less emphasis on interest levels or perceived impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信