Roux-en-Y gastric bypass-associated fecal tyramine promotes colon cancer risk via increased DNA damage, cell proliferation, and inflammation.

IF 13.8 1区 生物学 Q1 MICROBIOLOGY
Maria Glymenaki, Sophie Curio, Smeeta Shrestha, Qi Zhong, Laura Rushton, Rachael Barry, Mona El-Bahrawy, Julian R Marchesi, Yulan Wang, Nigel J Gooderham, Nadia Guerra, Jia V Li
{"title":"Roux-en-Y gastric bypass-associated fecal tyramine promotes colon cancer risk via increased DNA damage, cell proliferation, and inflammation.","authors":"Maria Glymenaki, Sophie Curio, Smeeta Shrestha, Qi Zhong, Laura Rushton, Rachael Barry, Mona El-Bahrawy, Julian R Marchesi, Yulan Wang, Nigel J Gooderham, Nadia Guerra, Jia V Li","doi":"10.1186/s40168-025-02049-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fecal abundances of Enterobacteriaceae and Enterococcaceae are elevated in patients following Roux-en-Y gastric bypass (RYGB) surgery. Concurrently, fecal concentrations of tyramine, derived from gut bacterial metabolism of tyrosine and/or food, increased post-RYGB. Furthermore, emerging evidence suggests that RYGB is associated with increased colorectal cancer (CRC) risk. However, the causal link between RYGB-associated microbial metabolites and CRC risk remains unclear. Hence, this study investigated the tyrosine metabolism of Enterobacteriaceae and Enterococcaceae strains isolated from patients post-RYGB and explored the causal effects of tyramine on the CRC risk and tumorigenesis using both human colonic cancer cell line (HCT 116) and wild-type and Apc<sup>Min/+</sup> mice.</p><p><strong>Results: </strong>We isolated 31 bacterial isolates belonging to Enterobacteriaceae and Enterococcaceae families from the feces of patients with RYGB surgery. By culturing the isolates in tyrosine-supplemented medium, we found that Citrobacter produced phenol as a main product of tyrosine, whereas Enterobacter and Klebsiella produced 4-hydroxyphenylacetate, Escherichia produced 4-hydroxyphenyllactate and 4-hydroxyphenylpyruvate, and Enterococcus and two Klebsiella isolates produced tyramine. These observations suggested the gut bacterial contribution to increased fecal concentrations of tyramine post-RYGB. We subsequently evaluated the impact of tyramine on CRC risk and development. Tyramine induced necrosis and promoted cell proliferation and DNA damage of HCT 116 cells. Daily oral administration of tyramine for 49 days to wild-type mice resulted in visible adenomas in 5 out of 12 mice, accompanied by significantly enhanced DNA damage (γH2AX +) and an increased trend of cell proliferation (Ki67 +) in the ileum, along with an upregulated expression of the cell division cycle gene (Cdc34b) in the colon. To evaluate the impact of tyramine on intestinal tumor growth, we treated Apc<sup>Min/+</sup> mice with the same doses of tyramine and duration. These mice showed larger colonic tumor size and increased intestinal cell proliferation and inflammation (e.g., increased mRNA expression of IL-17A and higher number of Ly6G + neutrophils) compared to water-treated Apc<sup>Min/+</sup> control mice.</p><p><strong>Conclusions: </strong>Our results collectively suggested that RYGB-associated fecal bacteria could contribute to tyramine production and tyramine increased CRC risk by increasing DNA damage, cell proliferation, and pro-inflammatory responses of the gut. Monitoring and modulating tyramine concentrations in high-risk individuals could aid CRC prognosis and management. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"60"},"PeriodicalIF":13.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869571/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02049-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Fecal abundances of Enterobacteriaceae and Enterococcaceae are elevated in patients following Roux-en-Y gastric bypass (RYGB) surgery. Concurrently, fecal concentrations of tyramine, derived from gut bacterial metabolism of tyrosine and/or food, increased post-RYGB. Furthermore, emerging evidence suggests that RYGB is associated with increased colorectal cancer (CRC) risk. However, the causal link between RYGB-associated microbial metabolites and CRC risk remains unclear. Hence, this study investigated the tyrosine metabolism of Enterobacteriaceae and Enterococcaceae strains isolated from patients post-RYGB and explored the causal effects of tyramine on the CRC risk and tumorigenesis using both human colonic cancer cell line (HCT 116) and wild-type and ApcMin/+ mice.

Results: We isolated 31 bacterial isolates belonging to Enterobacteriaceae and Enterococcaceae families from the feces of patients with RYGB surgery. By culturing the isolates in tyrosine-supplemented medium, we found that Citrobacter produced phenol as a main product of tyrosine, whereas Enterobacter and Klebsiella produced 4-hydroxyphenylacetate, Escherichia produced 4-hydroxyphenyllactate and 4-hydroxyphenylpyruvate, and Enterococcus and two Klebsiella isolates produced tyramine. These observations suggested the gut bacterial contribution to increased fecal concentrations of tyramine post-RYGB. We subsequently evaluated the impact of tyramine on CRC risk and development. Tyramine induced necrosis and promoted cell proliferation and DNA damage of HCT 116 cells. Daily oral administration of tyramine for 49 days to wild-type mice resulted in visible adenomas in 5 out of 12 mice, accompanied by significantly enhanced DNA damage (γH2AX +) and an increased trend of cell proliferation (Ki67 +) in the ileum, along with an upregulated expression of the cell division cycle gene (Cdc34b) in the colon. To evaluate the impact of tyramine on intestinal tumor growth, we treated ApcMin/+ mice with the same doses of tyramine and duration. These mice showed larger colonic tumor size and increased intestinal cell proliferation and inflammation (e.g., increased mRNA expression of IL-17A and higher number of Ly6G + neutrophils) compared to water-treated ApcMin/+ control mice.

Conclusions: Our results collectively suggested that RYGB-associated fecal bacteria could contribute to tyramine production and tyramine increased CRC risk by increasing DNA damage, cell proliferation, and pro-inflammatory responses of the gut. Monitoring and modulating tyramine concentrations in high-risk individuals could aid CRC prognosis and management. Video Abstract.

Roux-en-Y胃旁路相关的粪便酪胺通过增加DNA损伤、细胞增殖和炎症来增加结肠癌的风险。
背景:Roux-en-Y胃旁路手术(RYGB)患者粪便中肠杆菌科和肠球菌科的丰度升高。同时,肠道细菌对酪氨酸和/或食物的代谢产生的酪胺的粪便浓度在rygb后增加。此外,新出现的证据表明RYGB与结直肠癌(CRC)风险增加有关。然而,rygb相关微生物代谢物与结直肠癌风险之间的因果关系尚不清楚。因此,本研究利用人结肠癌细胞系(HCT 116)和野生型和ApcMin/+小鼠,研究了rygb后患者分离的肠杆菌科和肠球菌科菌株的酪氨酸代谢,探讨了酪胺对结直肠癌风险和肿瘤发生的因果关系。结果:从RYGB手术患者粪便中分离出肠杆菌科和肠球菌科细菌31株。通过在补充酪氨酸的培养基中培养菌株,我们发现柠檬酸杆菌产生的主要产物是苯酚,而肠杆菌和克雷伯菌产生的主要产物是4-羟基苯基乙酸酯,埃希氏菌产生的是4-羟基苯基乳酸和4-羟基苯基丙酮酸,肠球菌和两株克雷伯菌产生的主要产物是酪胺。这些观察结果表明,肠道细菌有助于rygb后粪便酪胺浓度的增加。我们随后评估酪胺对结直肠癌风险和发展的影响。酪胺诱导HCT 116细胞坏死,促进细胞增殖和DNA损伤。野生型小鼠每天口服酪胺49天,12只小鼠中有5只出现明显的腺瘤,并伴有显著增强的DNA损伤(γ - h2ax +)和回肠细胞增殖(Ki67 +)的增加趋势,以及结肠细胞分裂周期基因(Cdc34b)的表达上调。为了评估酪胺对肠道肿瘤生长的影响,我们用相同剂量和持续时间的酪胺治疗ApcMin/+小鼠。与水处理的ApcMin/+对照小鼠相比,这些小鼠显示出更大的结肠肿瘤大小,肠道细胞增殖和炎症增加(例如,IL-17A mRNA表达增加,Ly6G +中性粒细胞数量增加)。结论:我们的研究结果共同表明,rygb相关的粪便细菌可以促进酪胺的产生,酪胺通过增加肠道的DNA损伤、细胞增殖和促炎反应来增加结直肠癌的风险。监测和调节高危人群酪胺浓度有助于CRC的预后和管理。视频摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信