Ezh2 Regulates Early Astrocyte Morphogenesis and Influences the Coverage of Astrocytic Endfeet on the Vasculature.

IF 5.9 1区 生物学 Q2 CELL BIOLOGY
Xinghua Zhao, Mengtian Zhang, WenZheng Zou, Chenxiao Li, Shukui Zhang, Yuqing Lv, Libo Su, Fen Ji, Jianwei Jiao, Yufei Gao
{"title":"Ezh2 Regulates Early Astrocyte Morphogenesis and Influences the Coverage of Astrocytic Endfeet on the Vasculature.","authors":"Xinghua Zhao, Mengtian Zhang, WenZheng Zou, Chenxiao Li, Shukui Zhang, Yuqing Lv, Libo Su, Fen Ji, Jianwei Jiao, Yufei Gao","doi":"10.1111/cpr.70015","DOIUrl":null,"url":null,"abstract":"<p><p>Astrocytes are crucial for central nervous system (CNS) development and function, with their differentiation being stringently controlled by epigenetic mechanisms, such as histone modifications. Enhancer of Zeste Homologue 2 (EZH2), a histone methyltransferase, is essential for the suppression of gene expression. However, the role of EZH2 in astrocyte early morphogenesis has remained unclear. Using an astrocyte-specific Ezh2 knockout (cKO) mouse model, we examined the effects of EZH2 deletion on astrocyte morphogenesis, blood-brain barrier (BBB) integrity and neurodevelopment. Loss of EZH2 led to increased glial fibrillary acidic protein (GFAP) expression, altered astrocyte morphology and reduced coverage of astrocytic endfeet on blood vessels, compromising BBB integrity. Vascular abnormalities, characterised by increased vascular density and smaller vessel diameter, mirrored compensatory changes seen in moyamoya disease. RNA-sequencing and ChIP-seq identified Ddn as a key upregulated gene in Ezh2<sup>cKO</sup> astrocytes, influencing cytoskeletal changes via the MAPK/ERK pathway. Behavioural analysis revealed autism-like traits, such as reduced vocalisations, without significant anxiety-like behaviour. These findings highlight EZH2 as a critical regulator of astrocyte function, with its disruption contributing to neurodevelopmental disorders. This study provides novel insights into the molecular pathways governing astrocyte differentiation and suggests EZH2 as a promising therapeutic target for gliomas and other CNS disorders.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70015"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Astrocytes are crucial for central nervous system (CNS) development and function, with their differentiation being stringently controlled by epigenetic mechanisms, such as histone modifications. Enhancer of Zeste Homologue 2 (EZH2), a histone methyltransferase, is essential for the suppression of gene expression. However, the role of EZH2 in astrocyte early morphogenesis has remained unclear. Using an astrocyte-specific Ezh2 knockout (cKO) mouse model, we examined the effects of EZH2 deletion on astrocyte morphogenesis, blood-brain barrier (BBB) integrity and neurodevelopment. Loss of EZH2 led to increased glial fibrillary acidic protein (GFAP) expression, altered astrocyte morphology and reduced coverage of astrocytic endfeet on blood vessels, compromising BBB integrity. Vascular abnormalities, characterised by increased vascular density and smaller vessel diameter, mirrored compensatory changes seen in moyamoya disease. RNA-sequencing and ChIP-seq identified Ddn as a key upregulated gene in Ezh2cKO astrocytes, influencing cytoskeletal changes via the MAPK/ERK pathway. Behavioural analysis revealed autism-like traits, such as reduced vocalisations, without significant anxiety-like behaviour. These findings highlight EZH2 as a critical regulator of astrocyte function, with its disruption contributing to neurodevelopmental disorders. This study provides novel insights into the molecular pathways governing astrocyte differentiation and suggests EZH2 as a promising therapeutic target for gliomas and other CNS disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Proliferation
Cell Proliferation 生物-细胞生物学
CiteScore
14.80
自引率
2.40%
发文量
198
审稿时长
1 months
期刊介绍: Cell Proliferation Focus: Devoted to studies into all aspects of cell proliferation and differentiation. Covers normal and abnormal states. Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic. Investigates modification by and interactions with chemical and physical agents. Includes mathematical modeling and the development of new techniques. Publication Content: Original research papers Invited review articles Book reviews Letters commenting on previously published papers and/or topics of general interest By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信