Nanoemulgel mediated enhanced skin curcumin penetration/retention for local treatment of cutaneous leishmaniasis: in vitro and in vivo assessment.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL
Shoaib Ur Rehman, Nauman Rahim Khan, Majeed Ullah, Shefaat Ullah Shah, Asim Ur Rehman, Qaisar Jamal, Memuna Ghafoor Shahid, Hassan A Albarqi, Ali Alasiri, Abdulsalam A Alqahtani, Ismail A Walbi
{"title":"Nanoemulgel mediated enhanced skin curcumin penetration/retention for local treatment of cutaneous leishmaniasis: <i>in vitro</i> and <i>in vivo</i> assessment.","authors":"Shoaib Ur Rehman, Nauman Rahim Khan, Majeed Ullah, Shefaat Ullah Shah, Asim Ur Rehman, Qaisar Jamal, Memuna Ghafoor Shahid, Hassan A Albarqi, Ali Alasiri, Abdulsalam A Alqahtani, Ismail A Walbi","doi":"10.1080/03639045.2025.2473495","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Skin delivery of a therapeutically effective drug is imperative for local cutaneous leishmaniasis (CL) treatment.</p><p><strong>Objective: </strong>This study aimed to formulate, optimize, and characterize curcumin-loaded nanoemulgel for enhanced skin drug retention to treat CL locally.</p><p><strong>Methods: </strong>Nanoemulsions were prepared by high-speed homogenization, characterized, and optimized for size, PDI, zeta potential, stability, morphology, drug contents, encapsulation efficiency, <i>in vitro</i> drug release, antileishmanial activity, and cell viability. The optimized nanoemulsion (C3) was then incorporated into a carbopol-based gel and evaluated for pH, viscosity, spreadability, and <i>in vitro</i> drug release. Both formulations were then assessed for <i>ex-vivo</i> and <i>in vivo</i> skin permeation/retention, and pharmacokinetic analysis.</p><p><strong>Results: </strong>All nanoemulsion formulations had size in nano range with negative surface charge, homogeneously distributed, with spherical droplet geometries, where C3 being highly stable, had good encapsulation efficiency and drug contents (85 ± 5.4 and 68 ± 3.2%), released 90% of drug within 4 h, while C3 gel released the drug significantly sustained up to 46% in 24 h. The C3 formulation demonstrated significant <i>in vitro</i> antileishmanial activity across all tested concentrations, while the IC<sub>50</sub> value against NIH3T3 fibroblasts was 0.6202 mM (Log IC<sub>50</sub>: 2.7, <i>R</i><sup>2</sup>: 0.98). The C3 gel showed significantly low skin permeation (341.7 ± 43.6 and 52.6 ± 8.9 µg) with significantly higher skin drug retention (129.5 ± 16.7 and 190.2 ± 33.4 µg) <i>ex-vivo</i> and <i>in vivo</i>, with significantly lower <i>C</i><sub>max</sub>, AUC<sub>0-</sub><i><sub>t</sub></i>, and AUC<sub>0-∞</sub>.</p><p><strong>Conclusion: </strong>These results suggested that curcumin nanoemulgel could be an effective alternative strategy for treating CL locally.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"354-364"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2025.2473495","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Skin delivery of a therapeutically effective drug is imperative for local cutaneous leishmaniasis (CL) treatment.

Objective: This study aimed to formulate, optimize, and characterize curcumin-loaded nanoemulgel for enhanced skin drug retention to treat CL locally.

Methods: Nanoemulsions were prepared by high-speed homogenization, characterized, and optimized for size, PDI, zeta potential, stability, morphology, drug contents, encapsulation efficiency, in vitro drug release, antileishmanial activity, and cell viability. The optimized nanoemulsion (C3) was then incorporated into a carbopol-based gel and evaluated for pH, viscosity, spreadability, and in vitro drug release. Both formulations were then assessed for ex-vivo and in vivo skin permeation/retention, and pharmacokinetic analysis.

Results: All nanoemulsion formulations had size in nano range with negative surface charge, homogeneously distributed, with spherical droplet geometries, where C3 being highly stable, had good encapsulation efficiency and drug contents (85 ± 5.4 and 68 ± 3.2%), released 90% of drug within 4 h, while C3 gel released the drug significantly sustained up to 46% in 24 h. The C3 formulation demonstrated significant in vitro antileishmanial activity across all tested concentrations, while the IC50 value against NIH3T3 fibroblasts was 0.6202 mM (Log IC50: 2.7, R2: 0.98). The C3 gel showed significantly low skin permeation (341.7 ± 43.6 and 52.6 ± 8.9 µg) with significantly higher skin drug retention (129.5 ± 16.7 and 190.2 ± 33.4 µg) ex-vivo and in vivo, with significantly lower Cmax, AUC0-t, and AUC0-∞.

Conclusion: These results suggested that curcumin nanoemulgel could be an effective alternative strategy for treating CL locally.

纳米凝胶介导的增强皮肤姜黄素渗透/保留局部治疗皮肤利什曼病:体外和体内评估。
背景:皮肤给药是局部皮肤利什曼病(CL)治疗的必要条件。目的:研究姜黄素纳米凝胶的制备、优化和表征,以增强局部皮肤药物潴留。方法:采用高速均质法制备纳米乳,对其粒径、PDI、zeta电位、稳定性、形貌、药物含量、包封效率、体外释药、抗利什曼原虫活性和细胞活力进行表征和优化。然后将优化后的纳米乳(C3)掺入碳水化合物基凝胶中,并对其pH、粘度、涂抹性和体外药物释放度进行评估。然后评估两种制剂的体内和体外皮肤渗透/滞留,以及药代动力学分析。结果:所有纳米乳制剂的粒径均在纳米范围内,表面电荷为负,分布均匀,呈球形滴状,其中C3稳定性高,包封效率和药物含量均较好(85±5.4%,68±3.2%),4 h内释药率为90%,而C3凝胶在24 h内释药率高达46%。C3制剂在所有测试浓度下均表现出显著的体外抗利什曼原虫活性,而对NIH3T3成纤维细胞的IC50值为0.6202 mM (Log IC50: 2.7, R2: 0.98)。C3凝胶的皮肤渗透性(341.7±43.6µg和52.6±8.9µg)较低,体外和体内皮肤药物潴留(129.5±16.7µg和190.2±33.4µg)较高,Cmax、AUC0-t和AUC0-∞均较低。结论:姜黄素纳米凝胶可作为局部治疗胆管癌的有效替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信