Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a retrospective cohort study and predictive modeling based on machine learning.

IF 8.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Yu Guo, Fuxu Wang, Shiyin Ma, Zhi Mao, Shuangmei Zhao, Liutao Sui, Chucheng Jiao, Ruogu Lu, Xiaoyan Zhu, Xudong Pan
{"title":"Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a retrospective cohort study and predictive modeling based on machine learning.","authors":"Yu Guo, Fuxu Wang, Shiyin Ma, Zhi Mao, Shuangmei Zhao, Liutao Sui, Chucheng Jiao, Ruogu Lu, Xiaoyan Zhu, Xudong Pan","doi":"10.1186/s12933-025-02654-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The atherogenic index of plasma (AIP) is considered an important marker of atherosclerosis and cardiovascular risk. However, its potential role in predicting length of stay (LOS), especially in patients with atherosclerotic cardiovascular disease (ASCVD), remains to be explored. We investigated the effect of AIP on hospital LOS in critically ill ASCVD patients and explored the risk factors affecting LOS in conjunction with machine learning.</p><p><strong>Methods: </strong>Using data from the Medical Information Mart for Intensive Care (MIMIC)-IV. AIP was calculated as the logarithmic ratio of TG to HDL-C, and patients were stratified into four groups based on AIP values. We investigated the association between AIP and two key clinical outcomes: ICU LOS and total hospital LOS. Multivariate logistic regression models were used to evaluate these associations, while restricted cubic spline (RCS) regressions assessed potential nonlinear relationships. Additionally, machine learning (ML) techniques, including logistic regression (LR), decision tree (DT), random forest (RF), extreme gradient boosting (XGB), and light gradient boosting machine (LGB), were applied, with the Shapley additive explanation (SHAP) method used to determine feature importance.</p><p><strong>Results: </strong>The study enrolled a total of 2423 patients with critically ill ASCVD, predominantly male (54.91%), and revealed that higher AIP values were independently associated with longer ICU and hospital stays. Specifically, for each unit increase in AIP, the odds of prolonged ICU and hospital stays were significantly higher, with adjusted odds ratios (OR) of 1.42 (95% CI, 1.11-1.81; P = 0.006) and 1.73 (95% CI, 1.34-2.24; P < 0.001), respectively. The RCS regression demonstrated a linear relationship between increasing AIP and both ICU LOS and hospital LOS. ML models, specifically LGB (ROC:0.740) and LR (ROC:0.832) demonstrated superior predictive accuracy for these endpoints, identifying AIP as a vital component of hospitalization duration.</p><p><strong>Conclusion: </strong>AIP is a significant predictor of ICU and hospital LOS in patients with critically ill ASCVD. AIP could serve as an early prognostic tool for guiding clinical decision-making and managing patient outcomes.</p>","PeriodicalId":9374,"journal":{"name":"Cardiovascular Diabetology","volume":"24 1","pages":"95"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Diabetology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12933-025-02654-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The atherogenic index of plasma (AIP) is considered an important marker of atherosclerosis and cardiovascular risk. However, its potential role in predicting length of stay (LOS), especially in patients with atherosclerotic cardiovascular disease (ASCVD), remains to be explored. We investigated the effect of AIP on hospital LOS in critically ill ASCVD patients and explored the risk factors affecting LOS in conjunction with machine learning.

Methods: Using data from the Medical Information Mart for Intensive Care (MIMIC)-IV. AIP was calculated as the logarithmic ratio of TG to HDL-C, and patients were stratified into four groups based on AIP values. We investigated the association between AIP and two key clinical outcomes: ICU LOS and total hospital LOS. Multivariate logistic regression models were used to evaluate these associations, while restricted cubic spline (RCS) regressions assessed potential nonlinear relationships. Additionally, machine learning (ML) techniques, including logistic regression (LR), decision tree (DT), random forest (RF), extreme gradient boosting (XGB), and light gradient boosting machine (LGB), were applied, with the Shapley additive explanation (SHAP) method used to determine feature importance.

Results: The study enrolled a total of 2423 patients with critically ill ASCVD, predominantly male (54.91%), and revealed that higher AIP values were independently associated with longer ICU and hospital stays. Specifically, for each unit increase in AIP, the odds of prolonged ICU and hospital stays were significantly higher, with adjusted odds ratios (OR) of 1.42 (95% CI, 1.11-1.81; P = 0.006) and 1.73 (95% CI, 1.34-2.24; P < 0.001), respectively. The RCS regression demonstrated a linear relationship between increasing AIP and both ICU LOS and hospital LOS. ML models, specifically LGB (ROC:0.740) and LR (ROC:0.832) demonstrated superior predictive accuracy for these endpoints, identifying AIP as a vital component of hospitalization duration.

Conclusion: AIP is a significant predictor of ICU and hospital LOS in patients with critically ill ASCVD. AIP could serve as an early prognostic tool for guiding clinical decision-making and managing patient outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Diabetology
Cardiovascular Diabetology 医学-内分泌学与代谢
CiteScore
12.30
自引率
15.10%
发文量
240
审稿时长
1 months
期刊介绍: Cardiovascular Diabetology is a journal that welcomes manuscripts exploring various aspects of the relationship between diabetes, cardiovascular health, and the metabolic syndrome. We invite submissions related to clinical studies, genetic investigations, experimental research, pharmacological studies, epidemiological analyses, and molecular biology research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信