Comparative analysis using a chromosome-scale genome assembly for Funaria hygrometrica suggests greater collinearity in mosses than in seed plants.

IF 5.2 1区 生物学 Q1 BIOLOGY
Alexander Kirbis, Nasim Rahmatpour, Shanshan Dong, Jin Yu, Lucas Waser, Huaxing Huang, Nico van Gessel, Manuel Waller, Ralf Reski, Daniel Lang, Stefan A Rensing, Eva M Temsch, Jill L Wegrzyn, Bernard Goffinet, Yang Liu, Péter Szövényi
{"title":"Comparative analysis using a chromosome-scale genome assembly for Funaria hygrometrica suggests greater collinearity in mosses than in seed plants.","authors":"Alexander Kirbis, Nasim Rahmatpour, Shanshan Dong, Jin Yu, Lucas Waser, Huaxing Huang, Nico van Gessel, Manuel Waller, Ralf Reski, Daniel Lang, Stefan A Rensing, Eva M Temsch, Jill L Wegrzyn, Bernard Goffinet, Yang Liu, Péter Szövényi","doi":"10.1038/s42003-025-07749-x","DOIUrl":null,"url":null,"abstract":"<p><p>Mosses, the largest lineage of seed-free plants, have smaller and less variable genome sizes than flowering plants. Nevertheless, whether this difference results from divergent genome dynamics is poorly known. Here, we use newly generated chromosome-scale genome assemblies for Funaria hygrometrica and comparative analysis with other moss and seed plant genomes to investigate moss genome dynamics. Although some aspects of moss genome dynamics are seed plant-like, such as the mechanism of genome size change and de novo gain/loss of genes, moss genomes retain higher synteny, and collinearity over evolutionary time than seed plant genomes. Furthermore, transposable elements and genes are more evenly distributed along chromosomes in mosses than in seed plants, a feature shared with other sequenced seed-free plant genomes. Overall, our findings support the hypothesis that large-scale genome structure and dynamics of mosses and seed plants differ. In particular, our data suggest a lower rate of gene order reshuffling along chromosomes in mosses compared to seed plants. We speculate that such lower rate of structural genomic variation and unique chromosome structure in mosses may contribute to their relatively smaller and less variable genome sizes.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"330"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07749-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mosses, the largest lineage of seed-free plants, have smaller and less variable genome sizes than flowering plants. Nevertheless, whether this difference results from divergent genome dynamics is poorly known. Here, we use newly generated chromosome-scale genome assemblies for Funaria hygrometrica and comparative analysis with other moss and seed plant genomes to investigate moss genome dynamics. Although some aspects of moss genome dynamics are seed plant-like, such as the mechanism of genome size change and de novo gain/loss of genes, moss genomes retain higher synteny, and collinearity over evolutionary time than seed plant genomes. Furthermore, transposable elements and genes are more evenly distributed along chromosomes in mosses than in seed plants, a feature shared with other sequenced seed-free plant genomes. Overall, our findings support the hypothesis that large-scale genome structure and dynamics of mosses and seed plants differ. In particular, our data suggest a lower rate of gene order reshuffling along chromosomes in mosses compared to seed plants. We speculate that such lower rate of structural genomic variation and unique chromosome structure in mosses may contribute to their relatively smaller and less variable genome sizes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信