Metastable phase-separated droplet generation and long-time DNA enrichment by laser-induced Soret effect.

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mika Kobayashi, Yoshihiro Minagawa, Hiroyuki Noji
{"title":"Metastable phase-separated droplet generation and long-time DNA enrichment by laser-induced Soret effect.","authors":"Mika Kobayashi, Yoshihiro Minagawa, Hiroyuki Noji","doi":"10.1038/s42004-025-01438-w","DOIUrl":null,"url":null,"abstract":"<p><p>Spatiotemporally controlled laser-induced phase separation (LIPS) offers unique research avenues and has potential for biological and biomedical applications. However, LIPS conditions often have drawbacks for practical use, which limit their applications. For instance, LIPS droplets are unstable and diminish after the laser is terminated. Here, we developed a novel LIPS method using laser-induced Soret effect with a simple setup to solve these problems. We generate liquid-liquid phase-separated (LLPS) droplets using LIPS in an aqueous two-phase system (ATPS) of dextran (DEX) and polyethylene glycol (PEG). When DEX-rich droplets were generated in the DEX/PEG mix on the phase boundary, the droplets showed unprecedently high longevity; the DEX droplets were retained over 48 h. This counterintuitive behaviour suggests that the droplet is in an unknown metastable state. By exploiting the capability of DEX-rich droplets to enrich nucleic acid polymers, we achieved stable DNA enrichment in LIPS DEX droplets with a high enrichment factor of 1400 ± 400. Further, we patterned DNA-carrying DEX-rich droplets into a designed structure to demonstrate the stability and spatiotemporal controllability of DEX-rich droplet formation. This is the first report for LIPS droplet generation in a DEX/PEG system, opening new avenues for biological and medical applications of LIPS.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"61"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01438-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatiotemporally controlled laser-induced phase separation (LIPS) offers unique research avenues and has potential for biological and biomedical applications. However, LIPS conditions often have drawbacks for practical use, which limit their applications. For instance, LIPS droplets are unstable and diminish after the laser is terminated. Here, we developed a novel LIPS method using laser-induced Soret effect with a simple setup to solve these problems. We generate liquid-liquid phase-separated (LLPS) droplets using LIPS in an aqueous two-phase system (ATPS) of dextran (DEX) and polyethylene glycol (PEG). When DEX-rich droplets were generated in the DEX/PEG mix on the phase boundary, the droplets showed unprecedently high longevity; the DEX droplets were retained over 48 h. This counterintuitive behaviour suggests that the droplet is in an unknown metastable state. By exploiting the capability of DEX-rich droplets to enrich nucleic acid polymers, we achieved stable DNA enrichment in LIPS DEX droplets with a high enrichment factor of 1400 ± 400. Further, we patterned DNA-carrying DEX-rich droplets into a designed structure to demonstrate the stability and spatiotemporal controllability of DEX-rich droplet formation. This is the first report for LIPS droplet generation in a DEX/PEG system, opening new avenues for biological and medical applications of LIPS.

利用激光诱导的索雷特效应生成可转移的相分离液滴并长时间富集 DNA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信