ARv7 promotes the escape of prostate cancer cells from androgen deprivation therapy-induced senescence by mediating the SKP2/p27 axis.

IF 4.4 1区 生物学 Q1 BIOLOGY
Dian Zhuang, Jinsong Kang, Haoge Luo, Yu Tian, Xiaoping Liu, Chen Shao
{"title":"ARv7 promotes the escape of prostate cancer cells from androgen deprivation therapy-induced senescence by mediating the SKP2/p27 axis.","authors":"Dian Zhuang, Jinsong Kang, Haoge Luo, Yu Tian, Xiaoping Liu, Chen Shao","doi":"10.1186/s12915-025-02172-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Androgen deprivation therapy (ADT) induces cellular senescence and tumor stasis, thus serving as the standard treatment for prostate cancer (PCa). However, continuous suppression of canonical androgen receptor signaling actually leads to the switch from androgen-responsive growth to androgen-independent growth, contributing to \"escape\" from this ADT-induced senescence (AIS) and, subsequently, the development of castration-resistant prostate cancer (CRPC). Unfortunately, the mechanism underlying this phenomenon remains elusive.</p><p><strong>Results: </strong>In this study, we demonstrated that androgen receptor splicing variant 7 (ARv7), a dominant factor mediating abnormal AR signaling and ADT resistance, is closely associated with outgrowth from AIS of PCa cells. Mechanistically, ARv7 binds to the promoter of SKP2, activating its transcription, and then promotes the proteasomal degradation of the cell cycle regulator p27 and G1/S transition. In addition, we applied bioinformatic and in vitro analyses to show that SKP2 expression level is dramatically inhibited upon ADT, but its reactivation is one key step during the establishment of CRPC. Finally, we also demonstrated that SKP2 inhibitor treatment can significantly inhibit the growth of androgen-independent cell lines and enhance the efficacy of ADT.</p><p><strong>Conclusions: </strong>Our work reveals a novel role of ARv7 in regulating AIS and suggests that targeting the ARv7/SKP2/p27 axis could be a potential strategy to delay disease progression to the CRPC state during prolonged ADT.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"66"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871636/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02172-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Androgen deprivation therapy (ADT) induces cellular senescence and tumor stasis, thus serving as the standard treatment for prostate cancer (PCa). However, continuous suppression of canonical androgen receptor signaling actually leads to the switch from androgen-responsive growth to androgen-independent growth, contributing to "escape" from this ADT-induced senescence (AIS) and, subsequently, the development of castration-resistant prostate cancer (CRPC). Unfortunately, the mechanism underlying this phenomenon remains elusive.

Results: In this study, we demonstrated that androgen receptor splicing variant 7 (ARv7), a dominant factor mediating abnormal AR signaling and ADT resistance, is closely associated with outgrowth from AIS of PCa cells. Mechanistically, ARv7 binds to the promoter of SKP2, activating its transcription, and then promotes the proteasomal degradation of the cell cycle regulator p27 and G1/S transition. In addition, we applied bioinformatic and in vitro analyses to show that SKP2 expression level is dramatically inhibited upon ADT, but its reactivation is one key step during the establishment of CRPC. Finally, we also demonstrated that SKP2 inhibitor treatment can significantly inhibit the growth of androgen-independent cell lines and enhance the efficacy of ADT.

Conclusions: Our work reveals a novel role of ARv7 in regulating AIS and suggests that targeting the ARv7/SKP2/p27 axis could be a potential strategy to delay disease progression to the CRPC state during prolonged ADT.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信