Investigation of Fe(II) Complexes with 1,10-Phenanthroline and 2,2′;6′,2“-Terpyridine for Aqueous Flow Battery Applications

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Jenna Hannonen, Ali Tuna, Gabriel Gonzalez, Dr. Eduardo Martínez González, Prof. Pekka Peljo
{"title":"Investigation of Fe(II) Complexes with 1,10-Phenanthroline and 2,2′;6′,2“-Terpyridine for Aqueous Flow Battery Applications","authors":"Jenna Hannonen,&nbsp;Ali Tuna,&nbsp;Gabriel Gonzalez,&nbsp;Dr. Eduardo Martínez González,&nbsp;Prof. Pekka Peljo","doi":"10.1002/celc.202400574","DOIUrl":null,"url":null,"abstract":"<p>Iron(II) complexes with 1,10-phenanthroline (phen) and 2,2′;6′,2“-terpyridine (terpy) ligands bearing different functional groups (methyl, 4-pyridyl, chloro, carboxylic acid) were evaluated for aqueous flow battery applications, detecting oxidation processes followed by coupled chemical reactions. Redox potentials of these compounds were sufficiently high for suitable positive electrolytes (0.88–1.29 V vs. SHE). Randles-Ševčík equation and finite element modelling with COMSOL Multiphysics were utilized in evaluating the diffusion coefficient and the apparent rates of the electron transfer and coupled chemical reactions for the compounds studied by cyclic voltammetry. The systems experience weak adsorption of reactants at glassy carbon, leading to difficulties in determining the latter kinetic parameters. Flow battery tests indicate sufficient flow battery performance with dimethyl functionalized phenanthroline complex [Fe(II)(DMe-phen)<sub>3</sub>]<sup>2+</sup> with 0.06 % per cycle (2.78 % per day) capacity decay. However, [Fe(II)(DMe-phen)<sub>3</sub>]<sup>2+</sup>, as well as [Fe(II)(phen)<sub>3</sub>]<sup>2+</sup>, experience the discharge at two different thermodynamic conditions, suggesting dimer discharge as the source of the lower voltage plateau. The energy efficiency of [Fe(II)(DMe-phen)<sub>3</sub>]<sup>2+</sup> battery was improved by cycling at higher cut-off voltage for 10 cycles, after which the lost capacity was recovered with lower cut-off voltage in one cycle. [Fe(II)(terpy)<sub>2</sub>]<sup>2+</sup> had too many side reactions at lower potentials to be suitable for flow battery applications.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400574","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400574","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Iron(II) complexes with 1,10-phenanthroline (phen) and 2,2′;6′,2“-terpyridine (terpy) ligands bearing different functional groups (methyl, 4-pyridyl, chloro, carboxylic acid) were evaluated for aqueous flow battery applications, detecting oxidation processes followed by coupled chemical reactions. Redox potentials of these compounds were sufficiently high for suitable positive electrolytes (0.88–1.29 V vs. SHE). Randles-Ševčík equation and finite element modelling with COMSOL Multiphysics were utilized in evaluating the diffusion coefficient and the apparent rates of the electron transfer and coupled chemical reactions for the compounds studied by cyclic voltammetry. The systems experience weak adsorption of reactants at glassy carbon, leading to difficulties in determining the latter kinetic parameters. Flow battery tests indicate sufficient flow battery performance with dimethyl functionalized phenanthroline complex [Fe(II)(DMe-phen)3]2+ with 0.06 % per cycle (2.78 % per day) capacity decay. However, [Fe(II)(DMe-phen)3]2+, as well as [Fe(II)(phen)3]2+, experience the discharge at two different thermodynamic conditions, suggesting dimer discharge as the source of the lower voltage plateau. The energy efficiency of [Fe(II)(DMe-phen)3]2+ battery was improved by cycling at higher cut-off voltage for 10 cycles, after which the lost capacity was recovered with lower cut-off voltage in one cycle. [Fe(II)(terpy)2]2+ had too many side reactions at lower potentials to be suitable for flow battery applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信