NaDFOB and FEC as Electrolyte Additives Enabling Improved Cyclability of Sodium Metal Batteries and Sodium Ion Batteries

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Dr. Zhengqi Wang, Dr. Andreas Hofmann
{"title":"NaDFOB and FEC as Electrolyte Additives Enabling Improved Cyclability of Sodium Metal Batteries and Sodium Ion Batteries","authors":"Dr. Zhengqi Wang,&nbsp;Dr. Andreas Hofmann","doi":"10.1002/celc.202400597","DOIUrl":null,"url":null,"abstract":"<p>Sodium metal is often considered as an anode material to improve the energy-density of sodium metal batteries (SMB) respectively sodium ion-based batteries (SIB). However, the active Na metal anode is a particular challenge. To formulate a suitable electrolyte has therefore been a key issue to stabilize sodium metal anodes. Here we report additive strategies by using the additives sodium difluoro(oxalato) borate (NaDFOB) or/and fluoroethylene carbonate (FEC) in the baseline electrolyte solution of 1 M NaPF<sub>6</sub> in ethylene carbonate/propylene carbonate to overcome these issues. For the SMB with sodium anode and carbon-coated Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP) cathode, a stable cell cycling up to 600 cycles (capacity retention about 96±3 %) was reached by using only 1–2 wt. % NaDFOB, compared to only less than 75 cycles of the baseline electrolyte. Sodium plating/stripping tests, voltammetry measurements, impedance analysis as well as cell tests were performed in order to reveal the electrochemical characteristics of the electrolytes including additive effects. The optimal SIB cell performance in cells containing hard carbon and NVP was achieved by using 2 wt.-% NaDFOB. NaDFOB electrolyte can be considered as a beneficial additive for Na metal cell and its application could be also extended for full SIBs.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400597","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400597","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium metal is often considered as an anode material to improve the energy-density of sodium metal batteries (SMB) respectively sodium ion-based batteries (SIB). However, the active Na metal anode is a particular challenge. To formulate a suitable electrolyte has therefore been a key issue to stabilize sodium metal anodes. Here we report additive strategies by using the additives sodium difluoro(oxalato) borate (NaDFOB) or/and fluoroethylene carbonate (FEC) in the baseline electrolyte solution of 1 M NaPF6 in ethylene carbonate/propylene carbonate to overcome these issues. For the SMB with sodium anode and carbon-coated Na3V2(PO4)3 (NVP) cathode, a stable cell cycling up to 600 cycles (capacity retention about 96±3 %) was reached by using only 1–2 wt. % NaDFOB, compared to only less than 75 cycles of the baseline electrolyte. Sodium plating/stripping tests, voltammetry measurements, impedance analysis as well as cell tests were performed in order to reveal the electrochemical characteristics of the electrolytes including additive effects. The optimal SIB cell performance in cells containing hard carbon and NVP was achieved by using 2 wt.-% NaDFOB. NaDFOB electrolyte can be considered as a beneficial additive for Na metal cell and its application could be also extended for full SIBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信