Hybrid Polymer-Liquid Electrolytes and Their Interactions with Electrode Materials

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Martina Cattaruzza, Mats Johansson, Göran Lindbergh, Prof. Fang Liu
{"title":"Hybrid Polymer-Liquid Electrolytes and Their Interactions with Electrode Materials","authors":"Martina Cattaruzza,&nbsp;Mats Johansson,&nbsp;Göran Lindbergh,&nbsp;Prof. Fang Liu","doi":"10.1002/celc.202400561","DOIUrl":null,"url":null,"abstract":"<p>To address the increasing demand for efficient, safe, and sustainable energy storage solutions in the transition towards renewable energy and electrified society, this study explores hybrid polymer-liquid electrolytes (HEs) as a novel solution to overcome challenges of traditional liquid electrolytes used in lithium-ion batteries (LIBs). Particularly, the research is focused on polymerization-induced phase separation (PIPS) synthesized HEs with distinct phase-separated systems, where an ion-conducting liquid phase percolates the macropores and mesopores within the formed thermoset solid phase. This study investigates the feasibility of using HEs with commercial cathodes and highlights their respective merits and challenges. The feasibility of infusing and forming HEs in commercial cathodes via PIPS within both micron-sized and nano-sized confined spaces is proved. By incorporating these HE-infused electrodes into half-cell configurations, the study proves that the HEs are compatible with common cathodes, and they exhibit energy density comparable with traditional systems with liquid electrolyte.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400561","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400561","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the increasing demand for efficient, safe, and sustainable energy storage solutions in the transition towards renewable energy and electrified society, this study explores hybrid polymer-liquid electrolytes (HEs) as a novel solution to overcome challenges of traditional liquid electrolytes used in lithium-ion batteries (LIBs). Particularly, the research is focused on polymerization-induced phase separation (PIPS) synthesized HEs with distinct phase-separated systems, where an ion-conducting liquid phase percolates the macropores and mesopores within the formed thermoset solid phase. This study investigates the feasibility of using HEs with commercial cathodes and highlights their respective merits and challenges. The feasibility of infusing and forming HEs in commercial cathodes via PIPS within both micron-sized and nano-sized confined spaces is proved. By incorporating these HE-infused electrodes into half-cell configurations, the study proves that the HEs are compatible with common cathodes, and they exhibit energy density comparable with traditional systems with liquid electrolyte.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信