Statistical Assessment and Augmentation of European Centre for Medium-Range Weather Forecasts Monthly Precipitation Forecast (SEASonal Prediction of Precipitation)
IF 3.5 3区 地球科学Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
{"title":"Statistical Assessment and Augmentation of European Centre for Medium-Range Weather Forecasts Monthly Precipitation Forecast (SEASonal Prediction of Precipitation)","authors":"Mohsen Nasseri, Gerrit Schoups, Mercedeh Taheri","doi":"10.1002/joc.8723","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate prediction of precipitation is of paramount importance for effective planning of future water resources. In this study, we focused on the improvement and evaluation of the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation ensemble-based seasonal precipitation prediction product, designated (SEASonal prediction of precipitation (SEAS5)). Three selected linear regression methods, namely ordinary least squares (OLS), flexible least squares (FLS) and the quantile-quantile (Q-Q) methods, were used to develop a correction procedure. The watershed of Lake Urmia was selected as a case study. The application of these augmentation methods has yielded encouraging results, demonstrating an improvement in the statistical metrics of SEAS5 precipitation forecasts for the first and second-coming months. However, all linear projection methods improve the performance of the SEAS5 products. The Q-Q method has shown the highest efficiency among the methods, playing a significant role in improving the accuracy of the hindcast precipitation. A variety of statistics (deterministic, forecast skill and uncertainty scores) were used to evaluate the effectiveness of both the raw and enhanced SEAS5 products. These analyses provide a comprehensive understanding of the performance of the SEAS5 product in its original form and after augmentation. The results highlight the potential of the linear projection method (specifically Q-Q method) to improve the accuracy of hindcast precipitation and provide valuable insights for water resource planning in the study area.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8723","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of precipitation is of paramount importance for effective planning of future water resources. In this study, we focused on the improvement and evaluation of the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation ensemble-based seasonal precipitation prediction product, designated (SEASonal prediction of precipitation (SEAS5)). Three selected linear regression methods, namely ordinary least squares (OLS), flexible least squares (FLS) and the quantile-quantile (Q-Q) methods, were used to develop a correction procedure. The watershed of Lake Urmia was selected as a case study. The application of these augmentation methods has yielded encouraging results, demonstrating an improvement in the statistical metrics of SEAS5 precipitation forecasts for the first and second-coming months. However, all linear projection methods improve the performance of the SEAS5 products. The Q-Q method has shown the highest efficiency among the methods, playing a significant role in improving the accuracy of the hindcast precipitation. A variety of statistics (deterministic, forecast skill and uncertainty scores) were used to evaluate the effectiveness of both the raw and enhanced SEAS5 products. These analyses provide a comprehensive understanding of the performance of the SEAS5 product in its original form and after augmentation. The results highlight the potential of the linear projection method (specifically Q-Q method) to improve the accuracy of hindcast precipitation and provide valuable insights for water resource planning in the study area.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions