Groundwater Hydrodynamic Oscillations From Swash With Transparent Sand (GHOSTS)

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Delaney M. Benoit, Marie-Pierre C. Delisle, Greg Siemens, Britt Raubenheimer, Steve Elgar, Ryan P. Mulligan
{"title":"Groundwater Hydrodynamic Oscillations From Swash With Transparent Sand (GHOSTS)","authors":"Delaney M. Benoit,&nbsp;Marie-Pierre C. Delisle,&nbsp;Greg Siemens,&nbsp;Britt Raubenheimer,&nbsp;Steve Elgar,&nbsp;Ryan P. Mulligan","doi":"10.1029/2024JC021293","DOIUrl":null,"url":null,"abstract":"<p>Interactions between surface flows and groundwater in beaches can influence erosion and accretion, wave overtopping, groundwater levels and salinization, and transport of nutrients and pollutants. Laboratory experiments using transparent crushed quartz and optically matched mineral oil as proxies for sand and water allow the degree of saturation to be computed at pore-scale (0.7 mm resolution) enabling detailed investigations of the wave runup driven infiltration into a beach in a wave flume for a range of slopes and flow boundary conditions. The evolution of the wetting front resulting from wave runup on an initially unsaturated beach is described in detail, including the formation of an infiltration wedge in the subsurface of the swash zone and the wave-driven rise in fluid elevation inside the beach. The elevation of the runup for each event is found to be related closely to the saturation of the beach face, reaching an equilibrium state once the subsurface in the swash zone reaches capacity. The back wall boundary condition in the flume has a significant role in how subsurface flows increase saturation within the beach, especially with boundary head elevations greater than the initial phreatic surface. The results of these novel experimental observations are used to develop dimensionless relationships between the surface wave runup and the subsurface saturation rates. To improve monitoring and interpretation of future coastal groundwater studies, three distinct cross-shore regimes are defined for assessing change in subsurface fluid elevation in the beach.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021293","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021293","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Interactions between surface flows and groundwater in beaches can influence erosion and accretion, wave overtopping, groundwater levels and salinization, and transport of nutrients and pollutants. Laboratory experiments using transparent crushed quartz and optically matched mineral oil as proxies for sand and water allow the degree of saturation to be computed at pore-scale (0.7 mm resolution) enabling detailed investigations of the wave runup driven infiltration into a beach in a wave flume for a range of slopes and flow boundary conditions. The evolution of the wetting front resulting from wave runup on an initially unsaturated beach is described in detail, including the formation of an infiltration wedge in the subsurface of the swash zone and the wave-driven rise in fluid elevation inside the beach. The elevation of the runup for each event is found to be related closely to the saturation of the beach face, reaching an equilibrium state once the subsurface in the swash zone reaches capacity. The back wall boundary condition in the flume has a significant role in how subsurface flows increase saturation within the beach, especially with boundary head elevations greater than the initial phreatic surface. The results of these novel experimental observations are used to develop dimensionless relationships between the surface wave runup and the subsurface saturation rates. To improve monitoring and interpretation of future coastal groundwater studies, three distinct cross-shore regimes are defined for assessing change in subsurface fluid elevation in the beach.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信