The Roles of Neuroinflammation in l-DOPA-Induced Dyskinesia: Dissecting the Roles of NF-κB and TNF-α for Novel Pharmacological Therapeutic Approaches

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Mohammad Yasin Zamanian, Maryam Golmohammadi, Zhanna R. Gardanova, Mohammad Rahimi, Lusine G. Khachatryan, Mojtaba Khazaei
{"title":"The Roles of Neuroinflammation in l-DOPA-Induced Dyskinesia: Dissecting the Roles of NF-κB and TNF-α for Novel Pharmacological Therapeutic Approaches","authors":"Mohammad Yasin Zamanian,&nbsp;Maryam Golmohammadi,&nbsp;Zhanna R. Gardanova,&nbsp;Mohammad Rahimi,&nbsp;Lusine G. Khachatryan,&nbsp;Mojtaba Khazaei","doi":"10.1111/ejn.70034","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Levodopa-induced dyskinesia (LID) is a common and debilitating complication of long-term Parkinson's disease treatment. This review explores the roles of NF-κB and TNF-α signalling pathways in LID pathophysiology and potential therapeutic approaches targeting these mechanisms. Chronic levodopa treatment leads to aberrant neuroplasticity and neuroinflammation, involving activation of NF-κB and increased production of pro-inflammatory cytokines like TNF-α. NF-κB activation in glial cells contributes to sustained neuroinflammation and exacerbates dopaminergic neuron loss. TNF-α levels are elevated in brain regions affected by LID and correlate with dyskinesia severity. Several compounds are involved in mitigating LID by modulating these pathways. Agmatine reduces NF-κB activation and NMDA receptor expression while protecting dopaminergic neurons. Resveratrol and doxycycline demonstrate antidyskinetic effects by attenuating neuroinflammation and TNF-α production. The Rho-kinase (ROCK) inhibitor fasudil and cannabinoid receptor 2 (CB2) receptor agonists also show efficacy in reducing LID severity and neuroinflammation. Hydrogen gas inhalation decreases pro-inflammatory cytokine levels associated with LID. These findings highlight the complex interplay between NF-κB, TNF-α and other neurotransmitter systems in LID pathogenesis. Targeting neuroinflammation and glial activation through these pathways represents a promising strategy for developing novel LID treatments. Further research is needed to fully elucidate the mechanisms and optimize therapeutic approaches targeting NF-κB and TNF-α signalling in LID.</p>\n </div>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Levodopa-induced dyskinesia (LID) is a common and debilitating complication of long-term Parkinson's disease treatment. This review explores the roles of NF-κB and TNF-α signalling pathways in LID pathophysiology and potential therapeutic approaches targeting these mechanisms. Chronic levodopa treatment leads to aberrant neuroplasticity and neuroinflammation, involving activation of NF-κB and increased production of pro-inflammatory cytokines like TNF-α. NF-κB activation in glial cells contributes to sustained neuroinflammation and exacerbates dopaminergic neuron loss. TNF-α levels are elevated in brain regions affected by LID and correlate with dyskinesia severity. Several compounds are involved in mitigating LID by modulating these pathways. Agmatine reduces NF-κB activation and NMDA receptor expression while protecting dopaminergic neurons. Resveratrol and doxycycline demonstrate antidyskinetic effects by attenuating neuroinflammation and TNF-α production. The Rho-kinase (ROCK) inhibitor fasudil and cannabinoid receptor 2 (CB2) receptor agonists also show efficacy in reducing LID severity and neuroinflammation. Hydrogen gas inhalation decreases pro-inflammatory cytokine levels associated with LID. These findings highlight the complex interplay between NF-κB, TNF-α and other neurotransmitter systems in LID pathogenesis. Targeting neuroinflammation and glial activation through these pathways represents a promising strategy for developing novel LID treatments. Further research is needed to fully elucidate the mechanisms and optimize therapeutic approaches targeting NF-κB and TNF-α signalling in LID.

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Neuroscience
European Journal of Neuroscience 医学-神经科学
CiteScore
7.10
自引率
5.90%
发文量
305
审稿时长
3.5 months
期刊介绍: EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信