Behind phyllotaxis, within the meristem: a REM-ARF complex shapes inflorescence in Arabidopsis thaliana

IF 6.2 1区 生物学 Q1 PLANT SCIENCES
Francesca Caselli, Carlotta Ferrario, Veronica Maria Beretta, Sri Amarnadh Gupta Tondepu, Renaud Dumas, Humberto Herrera-Ubaldo, Stefan de Folter, Martin M. Kater, Veronica Gregis
{"title":"Behind phyllotaxis, within the meristem: a REM-ARF complex shapes inflorescence in Arabidopsis thaliana","authors":"Francesca Caselli,&nbsp;Carlotta Ferrario,&nbsp;Veronica Maria Beretta,&nbsp;Sri Amarnadh Gupta Tondepu,&nbsp;Renaud Dumas,&nbsp;Humberto Herrera-Ubaldo,&nbsp;Stefan de Folter,&nbsp;Martin M. Kater,&nbsp;Veronica Gregis","doi":"10.1111/tpj.70041","DOIUrl":null,"url":null,"abstract":"<p>Inflorescence architecture is established during the early stages of reproductive development and depends on the activity and identity of meristems. In <i>Arabidopsis thaliana</i>, the floral meristems (FMs), which will develop into flowers, arise with precise spatiotemporal regulation from the inflorescence meristem (IM). The outcome of this process is a geometrically organized structure characterized by a reiterated pattern called phyllotaxis, in which successive organs arise at specific divergence angles of 137.5°. Here we show that REM34 and REM35 transcription factors control phyllotactic patterning through cooperative interaction with ARF7 and ARF19, influencing the cell cycle rate and thus the IM dimension. Our proposed model suggests that ARF7 and ARF19, whose activity is triggered by auxin accumulation, interact with REM34 and REM35 to regulate two auxin-induced genes, <i>LBD18</i> and <i>PUCHI</i>, whose mutants phenocopy the permutated phyllotactic pattern of <i>rem34 rem35</i> and <i>arf7 arf19</i>. This complex also restricts cell cycling activity to specific areas of the meristem, indirectly determining its dimension and ultimately establishing FM positioning and phyllotaxis. Reiterative patterns are found in morphogenetic processes of complex organisms, and phyllotaxis has been employed to understand the mechanisms behind this regularity. Our research broadens the knowledge on this mechanism which is also strictly correlated with yield.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 5","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70041","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70041","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Inflorescence architecture is established during the early stages of reproductive development and depends on the activity and identity of meristems. In Arabidopsis thaliana, the floral meristems (FMs), which will develop into flowers, arise with precise spatiotemporal regulation from the inflorescence meristem (IM). The outcome of this process is a geometrically organized structure characterized by a reiterated pattern called phyllotaxis, in which successive organs arise at specific divergence angles of 137.5°. Here we show that REM34 and REM35 transcription factors control phyllotactic patterning through cooperative interaction with ARF7 and ARF19, influencing the cell cycle rate and thus the IM dimension. Our proposed model suggests that ARF7 and ARF19, whose activity is triggered by auxin accumulation, interact with REM34 and REM35 to regulate two auxin-induced genes, LBD18 and PUCHI, whose mutants phenocopy the permutated phyllotactic pattern of rem34 rem35 and arf7 arf19. This complex also restricts cell cycling activity to specific areas of the meristem, indirectly determining its dimension and ultimately establishing FM positioning and phyllotaxis. Reiterative patterns are found in morphogenetic processes of complex organisms, and phyllotaxis has been employed to understand the mechanisms behind this regularity. Our research broadens the knowledge on this mechanism which is also strictly correlated with yield.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信