Identification of a promoter region specifically active in the maturing endosperm of Arabidopsis seeds and its use for targeted modification of fatty acid metabolism

IF 6.2 1区 生物学 Q1 PLANT SCIENCES
Romane Miray, Sami Kazaz, Alexandra To, Sébastien Baud
{"title":"Identification of a promoter region specifically active in the maturing endosperm of Arabidopsis seeds and its use for targeted modification of fatty acid metabolism","authors":"Romane Miray,&nbsp;Sami Kazaz,&nbsp;Alexandra To,&nbsp;Sébastien Baud","doi":"10.1111/tpj.70038","DOIUrl":null,"url":null,"abstract":"<p>In angiosperm seeds, the relative proportions of the two zygotic tissues vary considerably from species to species. In many field-grown oilseed species, and in those of the model species <i>Arabidopsis thaliana</i>, the embryo predominates, and studies of lipid metabolism in whole seeds reflect embryonic metabolism. Metabolism in the endosperm has long been ignored in these species, where this tissue is reduced in size in the mature seed. As a result of recent methodological developments that allow us to follow up on the accumulation of transcripts and metabolites in different areas of these seeds, it has become clear that the lipid metabolism of the endosperm is often different from that of the embryo. However, as the differences between the two zygotic tissues are variations on the same theme rather than strict divergences, there is a lack of genetic tools to study either tissue specifically. To remedy this, we have identified and characterized a promoter sequence in <i>A. thaliana</i> that is specifically active in the seed endosperm during the maturation phase: the At3g29190 (<i>TPS15</i>) gene promoter. We have then shown that it is possible to use this promoter sequence to modulate fatty acid metabolism specifically in the endosperm, either by activating or repressing the expression of target genes in this tissue. This tool and the transgenic lines that can be generated will contribute to a better understanding of the specific features of lipid metabolism in oilseed endosperm and its physiological implications for the seed.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 5","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70038","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70038","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In angiosperm seeds, the relative proportions of the two zygotic tissues vary considerably from species to species. In many field-grown oilseed species, and in those of the model species Arabidopsis thaliana, the embryo predominates, and studies of lipid metabolism in whole seeds reflect embryonic metabolism. Metabolism in the endosperm has long been ignored in these species, where this tissue is reduced in size in the mature seed. As a result of recent methodological developments that allow us to follow up on the accumulation of transcripts and metabolites in different areas of these seeds, it has become clear that the lipid metabolism of the endosperm is often different from that of the embryo. However, as the differences between the two zygotic tissues are variations on the same theme rather than strict divergences, there is a lack of genetic tools to study either tissue specifically. To remedy this, we have identified and characterized a promoter sequence in A. thaliana that is specifically active in the seed endosperm during the maturation phase: the At3g29190 (TPS15) gene promoter. We have then shown that it is possible to use this promoter sequence to modulate fatty acid metabolism specifically in the endosperm, either by activating or repressing the expression of target genes in this tissue. This tool and the transgenic lines that can be generated will contribute to a better understanding of the specific features of lipid metabolism in oilseed endosperm and its physiological implications for the seed.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信