Identification of a promoter region specifically active in the maturing endosperm of Arabidopsis seeds and its use for targeted modification of fatty acid metabolism
Romane Miray, Sami Kazaz, Alexandra To, Sébastien Baud
{"title":"Identification of a promoter region specifically active in the maturing endosperm of Arabidopsis seeds and its use for targeted modification of fatty acid metabolism","authors":"Romane Miray, Sami Kazaz, Alexandra To, Sébastien Baud","doi":"10.1111/tpj.70038","DOIUrl":null,"url":null,"abstract":"<p>In angiosperm seeds, the relative proportions of the two zygotic tissues vary considerably from species to species. In many field-grown oilseed species, and in those of the model species <i>Arabidopsis thaliana</i>, the embryo predominates, and studies of lipid metabolism in whole seeds reflect embryonic metabolism. Metabolism in the endosperm has long been ignored in these species, where this tissue is reduced in size in the mature seed. As a result of recent methodological developments that allow us to follow up on the accumulation of transcripts and metabolites in different areas of these seeds, it has become clear that the lipid metabolism of the endosperm is often different from that of the embryo. However, as the differences between the two zygotic tissues are variations on the same theme rather than strict divergences, there is a lack of genetic tools to study either tissue specifically. To remedy this, we have identified and characterized a promoter sequence in <i>A. thaliana</i> that is specifically active in the seed endosperm during the maturation phase: the At3g29190 (<i>TPS15</i>) gene promoter. We have then shown that it is possible to use this promoter sequence to modulate fatty acid metabolism specifically in the endosperm, either by activating or repressing the expression of target genes in this tissue. This tool and the transgenic lines that can be generated will contribute to a better understanding of the specific features of lipid metabolism in oilseed endosperm and its physiological implications for the seed.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 5","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70038","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70038","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In angiosperm seeds, the relative proportions of the two zygotic tissues vary considerably from species to species. In many field-grown oilseed species, and in those of the model species Arabidopsis thaliana, the embryo predominates, and studies of lipid metabolism in whole seeds reflect embryonic metabolism. Metabolism in the endosperm has long been ignored in these species, where this tissue is reduced in size in the mature seed. As a result of recent methodological developments that allow us to follow up on the accumulation of transcripts and metabolites in different areas of these seeds, it has become clear that the lipid metabolism of the endosperm is often different from that of the embryo. However, as the differences between the two zygotic tissues are variations on the same theme rather than strict divergences, there is a lack of genetic tools to study either tissue specifically. To remedy this, we have identified and characterized a promoter sequence in A. thaliana that is specifically active in the seed endosperm during the maturation phase: the At3g29190 (TPS15) gene promoter. We have then shown that it is possible to use this promoter sequence to modulate fatty acid metabolism specifically in the endosperm, either by activating or repressing the expression of target genes in this tissue. This tool and the transgenic lines that can be generated will contribute to a better understanding of the specific features of lipid metabolism in oilseed endosperm and its physiological implications for the seed.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.