Polyphase Metamorphism of the Northern Rae Craton (Baffin Island, Arctic Canada) and Trace Element Behaviour in Monazite: Insights From Phase Equilibria Modelling and Geochronology
Diane Skipton, Natasha Wodicka, Owen Weller, Simon Jackson, Marc St-Onge, Benoit Saumur, Duane Petts
{"title":"Polyphase Metamorphism of the Northern Rae Craton (Baffin Island, Arctic Canada) and Trace Element Behaviour in Monazite: Insights From Phase Equilibria Modelling and Geochronology","authors":"Diane Skipton, Natasha Wodicka, Owen Weller, Simon Jackson, Marc St-Onge, Benoit Saumur, Duane Petts","doi":"10.1111/jmg.12808","DOIUrl":null,"url":null,"abstract":"<p>Integrated field mapping, phase equilibria modelling and in situ U–Pb monazite geochronology from the northern margin of the Rae craton on Baffin Island document three metamorphic events during the Neoarchean to the middle Paleoproterozoic. The Qimivvik area comprises Neoarchean tonalitic gneiss structurally juxtaposed over Neoarchean metasedimentary rocks along the Paleoproterozoic Qimivvik thrust and associated shear zone. High-grade metamorphism at ca. 2.56–2.50 Ga supports a footprint for cryptic late Neoarchean metamorphism over a distance of ∼600 km along the northwestern Rae margin from southern Boothia Peninsula to northern Baffin Island. Thermal peak mineral assemblages in the Qimivvik area equilibrated at ca. 1.9 Ga at conditions of ~710°C–790°C and 4.3–5.5 kbar. The dominant Paleoproterozoic foliation is defined by peak metamorphic phases and is reoriented by folds related to the Qimivvik thrust. Peak metamorphism and associated deformation, including the Qimivvik thrust, are interpreted as a manifestation of the Ellesmere-Inglefield belt of Ellesmere Island and West Greenland, which links with the ca. 1.9 Ga Thelon orogen of western Canada. Partial melting also occurred at ca. 1.8 Ga, possibly resulting from decompression of the Churchill domain following the collisional-accretionary events related to the late stages of amalgamation of Laurentia and supercontinent Nuna. Quantitative trace element maps (acquired using LA-ICP-MS) of monazite reveal distinct trace element signatures associated with each of three growth stages. Ca. 2.5 Ga monazite exhibits complex intragrain compositional zoning, has elevated Y and heavy rare earth elements (HREEs) relative to ca. 1.9 Ga monazite and has higher Th/U overall than both ca. 1.9 Ga and ca. 1.8 Ga monazite. These signatures suggest that ca. 2.5 Ga monazite growth was concomitant with partial melting and preceded the majority of garnet growth. The ca. 1.9 Ga monazite grains are comparatively less zoned and have lower Y + HREE contents than both ca. 2.5 Ga and 1.8 Ga monazite, consistent with the ca. 1.9 Ga monazite forming after most garnet growth. Elevated Y + HREE in the ca. 1.8 Ga monazite imply that it formed after retrograde resorption of garnet rims. In our samples, Y + HREE generally exhibit stronger correlations with monazite age and/or petrographic context than Eu/Eu* and Th/U. As some compositional overlap exists between monazite of different ages and petrographic contexts, quantitative limits (‘cut-offs’) based on trace element concentrations or ratios (e.g., Th/U, Eu/Eu*, La<sub>CN</sub>/Yb<sub>CN</sub>) are unreliable for distinguishing between monazite populations. In addition to providing important constraints on the early tectonic evolution of northeastern Laurentia, our study offers new insights into trace element behaviour in a key accessory mineral during three metamorphic events occurring over a ~700 Ma time period.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":"43 3","pages":"287-314"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12808","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12808","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated field mapping, phase equilibria modelling and in situ U–Pb monazite geochronology from the northern margin of the Rae craton on Baffin Island document three metamorphic events during the Neoarchean to the middle Paleoproterozoic. The Qimivvik area comprises Neoarchean tonalitic gneiss structurally juxtaposed over Neoarchean metasedimentary rocks along the Paleoproterozoic Qimivvik thrust and associated shear zone. High-grade metamorphism at ca. 2.56–2.50 Ga supports a footprint for cryptic late Neoarchean metamorphism over a distance of ∼600 km along the northwestern Rae margin from southern Boothia Peninsula to northern Baffin Island. Thermal peak mineral assemblages in the Qimivvik area equilibrated at ca. 1.9 Ga at conditions of ~710°C–790°C and 4.3–5.5 kbar. The dominant Paleoproterozoic foliation is defined by peak metamorphic phases and is reoriented by folds related to the Qimivvik thrust. Peak metamorphism and associated deformation, including the Qimivvik thrust, are interpreted as a manifestation of the Ellesmere-Inglefield belt of Ellesmere Island and West Greenland, which links with the ca. 1.9 Ga Thelon orogen of western Canada. Partial melting also occurred at ca. 1.8 Ga, possibly resulting from decompression of the Churchill domain following the collisional-accretionary events related to the late stages of amalgamation of Laurentia and supercontinent Nuna. Quantitative trace element maps (acquired using LA-ICP-MS) of monazite reveal distinct trace element signatures associated with each of three growth stages. Ca. 2.5 Ga monazite exhibits complex intragrain compositional zoning, has elevated Y and heavy rare earth elements (HREEs) relative to ca. 1.9 Ga monazite and has higher Th/U overall than both ca. 1.9 Ga and ca. 1.8 Ga monazite. These signatures suggest that ca. 2.5 Ga monazite growth was concomitant with partial melting and preceded the majority of garnet growth. The ca. 1.9 Ga monazite grains are comparatively less zoned and have lower Y + HREE contents than both ca. 2.5 Ga and 1.8 Ga monazite, consistent with the ca. 1.9 Ga monazite forming after most garnet growth. Elevated Y + HREE in the ca. 1.8 Ga monazite imply that it formed after retrograde resorption of garnet rims. In our samples, Y + HREE generally exhibit stronger correlations with monazite age and/or petrographic context than Eu/Eu* and Th/U. As some compositional overlap exists between monazite of different ages and petrographic contexts, quantitative limits (‘cut-offs’) based on trace element concentrations or ratios (e.g., Th/U, Eu/Eu*, LaCN/YbCN) are unreliable for distinguishing between monazite populations. In addition to providing important constraints on the early tectonic evolution of northeastern Laurentia, our study offers new insights into trace element behaviour in a key accessory mineral during three metamorphic events occurring over a ~700 Ma time period.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.