Detrimental Effects of β2-Microglobulin on Muscle Metabolism: Evidence From In Vitro, Animal and Human Research

IF 9.4 1区 医学 Q1 GERIATRICS & GERONTOLOGY
Shibo Wei, So Jeong Park, Eunah Choi, Il-Young Jang, Yan Zhang, Yingqi Xue, Yunju Jo, Hee-Won Jung, Eunhye Ji, Jin Young Lee, Yujin Moon, Eunju Lee, Dongryeol Ryu, Beom-Jun Kim
{"title":"Detrimental Effects of β2-Microglobulin on Muscle Metabolism: Evidence From In Vitro, Animal and Human Research","authors":"Shibo Wei,&nbsp;So Jeong Park,&nbsp;Eunah Choi,&nbsp;Il-Young Jang,&nbsp;Yan Zhang,&nbsp;Yingqi Xue,&nbsp;Yunju Jo,&nbsp;Hee-Won Jung,&nbsp;Eunhye Ji,&nbsp;Jin Young Lee,&nbsp;Yujin Moon,&nbsp;Eunju Lee,&nbsp;Dongryeol Ryu,&nbsp;Beom-Jun Kim","doi":"10.1002/jcsm.13745","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>β2-Microglobulin (B2M) has garnered considerable interest as a potential pro-ageing factor, leading to speculation about its involvement in muscle metabolism and the development of sarcopenia, a key component of ageing phenotypes. To explore this hypothesis, we conducted a comprehensive investigation into the impact of B2M on cellular and animal muscle biology, as well as its clinical implications concerning sarcopenia parameters in older individuals.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In vitro myogenesis was induced in mouse C2C12 myoblasts with 2% horse serum. For in vivo research, C57BL/6 mice aged 3 months were intraperitoneally given 250 μg of B2M daily, and muscular alterations were assessed one month later. Human blood samples were obtained from 158 participants who underwent assessments of muscle mass and function at an outpatient geriatric clinic affiliated with a teaching hospital. Sarcopenia and associated parameters were assessed using cut-off values specifically tailored for the Asian population. The concentration of serum B2M was quantified through an enzyme-linked immunosorbent assay.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Recombinant B2M inhibited in vitro myogenesis by increasing intracellular reactive oxygen species (ROS) production. Furthermore, B2M significantly induced differential myotube atrophy via ROS-mediated ITGB1 downregulation, leading to impaired activation of the FAK/AKT/ERK signalling cascade and enhanced nuclear translocation of FoxO transcription factors. Animal experiments showed that mice with systemic B2M treatment exhibited significantly smaller cross-sectional area of tibialis anterior and soleus muscle, weaker grip strength, shorter grid hanging time, and decreased latency time to fall off the rotating rod, compared to untreated controls. In a clinical study, serum B2M levels were inversely associated with grip strength, usual gait speed and short physical performance battery (SPPB) total score after adjustment for age, sex, and body mass index, whereas sarcopenia phenotype score showed a positive association. Consistently, higher serum B2M levels were associated with higher risk for weak grip strength, slow gait speed, low SPPB total score, and poor physical performance.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>These results provide experimental evidence that B2M exerted detrimental effects on muscle metabolism mainly by increasing oxidative stress. Furthermore, we made an effort to translate the results of in vitro and animal research into clinical implication and found that circulating B2M could be one of blood-based biomarkers to assess poor muscle health in older adults.</p>\n </section>\n </div>","PeriodicalId":48911,"journal":{"name":"Journal of Cachexia Sarcopenia and Muscle","volume":"16 2","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcsm.13745","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cachexia Sarcopenia and Muscle","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcsm.13745","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

β2-Microglobulin (B2M) has garnered considerable interest as a potential pro-ageing factor, leading to speculation about its involvement in muscle metabolism and the development of sarcopenia, a key component of ageing phenotypes. To explore this hypothesis, we conducted a comprehensive investigation into the impact of B2M on cellular and animal muscle biology, as well as its clinical implications concerning sarcopenia parameters in older individuals.

Methods

In vitro myogenesis was induced in mouse C2C12 myoblasts with 2% horse serum. For in vivo research, C57BL/6 mice aged 3 months were intraperitoneally given 250 μg of B2M daily, and muscular alterations were assessed one month later. Human blood samples were obtained from 158 participants who underwent assessments of muscle mass and function at an outpatient geriatric clinic affiliated with a teaching hospital. Sarcopenia and associated parameters were assessed using cut-off values specifically tailored for the Asian population. The concentration of serum B2M was quantified through an enzyme-linked immunosorbent assay.

Results

Recombinant B2M inhibited in vitro myogenesis by increasing intracellular reactive oxygen species (ROS) production. Furthermore, B2M significantly induced differential myotube atrophy via ROS-mediated ITGB1 downregulation, leading to impaired activation of the FAK/AKT/ERK signalling cascade and enhanced nuclear translocation of FoxO transcription factors. Animal experiments showed that mice with systemic B2M treatment exhibited significantly smaller cross-sectional area of tibialis anterior and soleus muscle, weaker grip strength, shorter grid hanging time, and decreased latency time to fall off the rotating rod, compared to untreated controls. In a clinical study, serum B2M levels were inversely associated with grip strength, usual gait speed and short physical performance battery (SPPB) total score after adjustment for age, sex, and body mass index, whereas sarcopenia phenotype score showed a positive association. Consistently, higher serum B2M levels were associated with higher risk for weak grip strength, slow gait speed, low SPPB total score, and poor physical performance.

Conclusion

These results provide experimental evidence that B2M exerted detrimental effects on muscle metabolism mainly by increasing oxidative stress. Furthermore, we made an effort to translate the results of in vitro and animal research into clinical implication and found that circulating B2M could be one of blood-based biomarkers to assess poor muscle health in older adults.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cachexia Sarcopenia and Muscle
Journal of Cachexia Sarcopenia and Muscle MEDICINE, GENERAL & INTERNAL-
CiteScore
13.30
自引率
12.40%
发文量
234
审稿时长
16 weeks
期刊介绍: The Journal of Cachexia, Sarcopenia and Muscle is a peer-reviewed international journal dedicated to publishing materials related to cachexia and sarcopenia, as well as body composition and its physiological and pathophysiological changes across the lifespan and in response to various illnesses from all fields of life sciences. The journal aims to provide a reliable resource for professionals interested in related research or involved in the clinical care of affected patients, such as those suffering from AIDS, cancer, chronic heart failure, chronic lung disease, liver cirrhosis, chronic kidney failure, rheumatoid arthritis, or sepsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信