Active Control of Bound States in the Continuum in Toroidal Metasurfaces

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fedor V. Kovalev, Andrey E. Miroshnichenko, Alexey A. Basharin, Hannes Toepfer, Ilya V. Shadrivov
{"title":"Active Control of Bound States in the Continuum in Toroidal Metasurfaces","authors":"Fedor V. Kovalev,&nbsp;Andrey E. Miroshnichenko,&nbsp;Alexey A. Basharin,&nbsp;Hannes Toepfer,&nbsp;Ilya V. Shadrivov","doi":"10.1002/adpr.202400070","DOIUrl":null,"url":null,"abstract":"<p>The remarkable properties of toroidal metasurfaces, featuring ultrahigh-Q bound states in the continuum (BIC) resonances and nonradiating anapole modes, have garnered significant attention. The active manipulation of quasi-BIC resonance characteristics offers substantial potential for advancing tunable metasurfaces. This study explores explicitly the application of vanadium dioxide, a phase change material widely used in active photonics and room-temperature bolometric detectors, to control quasi-BIC resonances in toroidal metasurfaces. The phase change transition of vanadium dioxide occurs in a narrow temperature range, providing a large variation in material resistivity. Through heating thin film patches of vanadium dioxide integrated into a metasurface comprising gold split-ring resonators on a sapphire substrate, remarkable control over the amplitude and frequency of quasi-BIC resonances is achieved due to their high sensitivity to losses present in the system. Breaking the symmetry of meta-atoms reveals enhanced tunability. The predicted maximum change in the quasi-BIC resonance amplitude reaches 14 dB with a temperature variation of ≈10 °C.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400070","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The remarkable properties of toroidal metasurfaces, featuring ultrahigh-Q bound states in the continuum (BIC) resonances and nonradiating anapole modes, have garnered significant attention. The active manipulation of quasi-BIC resonance characteristics offers substantial potential for advancing tunable metasurfaces. This study explores explicitly the application of vanadium dioxide, a phase change material widely used in active photonics and room-temperature bolometric detectors, to control quasi-BIC resonances in toroidal metasurfaces. The phase change transition of vanadium dioxide occurs in a narrow temperature range, providing a large variation in material resistivity. Through heating thin film patches of vanadium dioxide integrated into a metasurface comprising gold split-ring resonators on a sapphire substrate, remarkable control over the amplitude and frequency of quasi-BIC resonances is achieved due to their high sensitivity to losses present in the system. Breaking the symmetry of meta-atoms reveals enhanced tunability. The predicted maximum change in the quasi-BIC resonance amplitude reaches 14 dB with a temperature variation of ≈10 °C.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信