Sperm mtDNA Copy Number Is Not Associated With Midpiece Size Among Songbirds

IF 2.3 2区 生物学 Q2 ECOLOGY
Laima Bagdonaitė, Quentin Mauvisseau, Arild Johnsen, Jan T. Lifjeld, Erica H. Leder
{"title":"Sperm mtDNA Copy Number Is Not Associated With Midpiece Size Among Songbirds","authors":"Laima Bagdonaitė,&nbsp;Quentin Mauvisseau,&nbsp;Arild Johnsen,&nbsp;Jan T. Lifjeld,&nbsp;Erica H. Leder","doi":"10.1002/ece3.71055","DOIUrl":null,"url":null,"abstract":"<p>Tremendous variation in sperm morphology is observed across the animal kingdom. Within avian taxa, the songbirds (infraorder Passerides) have the largest variation in sperm morphology. Their spermatozoa move by using energy generated in the midpiece, which is formed by multiple mitochondria fusing together during spermatogenesis. However, very little is known regarding the number of mitochondria required to form the songbird midpiece. Based on previous research showing an association of midpiece length and mitochondrial DNA (mtDNA) copy number in the zebra finch <i>Taeniopygia guttata</i>, we hypothesize that songbird species with longer sperm midpieces have more copies of mtDNA. We estimated the sperm mtDNA copy number in 19 species from 10 families within Passerides, covering a broad range of midpiece sizes. Mitochondrial and nuclear DNA abundance were determined using droplet digital PCR (ddPCR) and the ratio between mitochondrial and single-copy nuclear genes was used to estimate mtDNA copy number per spermatozoon. We found that species differ in their average mtDNA copy number, but the variation was small and not significantly related to midpiece length. A possible explanation is that mitochondrial genomes are eliminated in the spermatids during spermatogenesis.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.71055","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.71055","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tremendous variation in sperm morphology is observed across the animal kingdom. Within avian taxa, the songbirds (infraorder Passerides) have the largest variation in sperm morphology. Their spermatozoa move by using energy generated in the midpiece, which is formed by multiple mitochondria fusing together during spermatogenesis. However, very little is known regarding the number of mitochondria required to form the songbird midpiece. Based on previous research showing an association of midpiece length and mitochondrial DNA (mtDNA) copy number in the zebra finch Taeniopygia guttata, we hypothesize that songbird species with longer sperm midpieces have more copies of mtDNA. We estimated the sperm mtDNA copy number in 19 species from 10 families within Passerides, covering a broad range of midpiece sizes. Mitochondrial and nuclear DNA abundance were determined using droplet digital PCR (ddPCR) and the ratio between mitochondrial and single-copy nuclear genes was used to estimate mtDNA copy number per spermatozoon. We found that species differ in their average mtDNA copy number, but the variation was small and not significantly related to midpiece length. A possible explanation is that mitochondrial genomes are eliminated in the spermatids during spermatogenesis.

Abstract Image

鸣禽精子mtDNA拷贝数与腹部大小无关
精子形态的巨大差异在动物界被观察到。在鸟类分类群中,鸣禽(次目雀形目)的精子形态差异最大。它们的精子通过在中间产生的能量移动,这是由多个线粒体在精子发生过程中融合在一起形成的。然而,关于形成鸣禽中部所需的线粒体数量知之甚少。基于对斑胸草雀中间片段长度与线粒体DNA拷贝数相关的研究,我们假设具有较长精子中间片段的鸣禽物种具有更多的mtDNA拷贝数。我们估计了雀形目动物10科19种的精子mtDNA拷贝数,涵盖了广泛的中间尺寸。采用液滴数字PCR (ddPCR)测定线粒体和细胞核DNA的丰度,用线粒体基因与单拷贝核基因的比值估计每个精子的mtDNA拷贝数。我们发现不同物种的平均mtDNA拷贝数存在差异,但差异较小,且与中间片段长度无显著相关。一种可能的解释是,在精子发生过程中,精子中的线粒体基因组被消除了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
3.80%
发文量
1027
审稿时长
3-6 weeks
期刊介绍: Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment. Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信