Kauzmann Paradox, Supercooling, and Finding Order in Chaos

Dr. Andrew Martin, Prof. Martin Thuo
{"title":"Kauzmann Paradox, Supercooling, and Finding Order in Chaos","authors":"Dr. Andrew Martin,&nbsp;Prof. Martin Thuo","doi":"10.1002/ange.202423536","DOIUrl":null,"url":null,"abstract":"<p>Prediction of a liquidus state with lower entropy than the corresponding solid at Kauzmann temperature (<i>T<sub>k</sub></i>), and associated entropy catastrophe/paradox, remains an enigma. Despite efforts to resolve this paradox for nearly 80 years, no unifying resolution has been reported. Potential resolutions to the Kauzmann paradox rely on an ideal glass transition, however, this limits the interpretation of <i>T<sub>k</sub></i> as an equilibrium critical point rather than an instability. Focusing on entropy, statistical mechanics and non-equilibrium dynamics becomes a key tenet in resolving this paradox. Expansion in phase space beyond 2D and consideration of T<sub>k</sub> as a non-equilibrium critical point is necessary to understand the extent of liquid relaxation beyond <i>T<sub>k</sub></i>. In this review, we provide an entropic perspective of the relaxation behavior of supercooled liquids, associated expanded phase diagram, and the potential resolution to the Kauzmann paradox. This work integrates the historical evolution of our understanding of entropy/thermodynamics with modern interpretation of quantum states through renormalization group and thermodynamic speed limits.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202423536","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202423536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prediction of a liquidus state with lower entropy than the corresponding solid at Kauzmann temperature (Tk), and associated entropy catastrophe/paradox, remains an enigma. Despite efforts to resolve this paradox for nearly 80 years, no unifying resolution has been reported. Potential resolutions to the Kauzmann paradox rely on an ideal glass transition, however, this limits the interpretation of Tk as an equilibrium critical point rather than an instability. Focusing on entropy, statistical mechanics and non-equilibrium dynamics becomes a key tenet in resolving this paradox. Expansion in phase space beyond 2D and consideration of Tk as a non-equilibrium critical point is necessary to understand the extent of liquid relaxation beyond Tk. In this review, we provide an entropic perspective of the relaxation behavior of supercooled liquids, associated expanded phase diagram, and the potential resolution to the Kauzmann paradox. This work integrates the historical evolution of our understanding of entropy/thermodynamics with modern interpretation of quantum states through renormalization group and thermodynamic speed limits.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信