The Type VI Secretion System of Sinorhizobium fredii USDA257 Is Required for Successful Nodulation With Glycine max cv Pekin

IF 5.7 2区 生物学
Pedro José Reyes-Pérez, Irene Jiménez-Guerrero, Ana Sánchez-Reina, Cristina Civantos, Natalia Moreno-de Castro, Francisco Javier Ollero, Jacinto Gandullo, Patricia Bernal, Francisco Pérez-Montaño
{"title":"The Type VI Secretion System of Sinorhizobium fredii USDA257 Is Required for Successful Nodulation With Glycine max cv Pekin","authors":"Pedro José Reyes-Pérez,&nbsp;Irene Jiménez-Guerrero,&nbsp;Ana Sánchez-Reina,&nbsp;Cristina Civantos,&nbsp;Natalia Moreno-de Castro,&nbsp;Francisco Javier Ollero,&nbsp;Jacinto Gandullo,&nbsp;Patricia Bernal,&nbsp;Francisco Pérez-Montaño","doi":"10.1111/1751-7915.70112","DOIUrl":null,"url":null,"abstract":"<p>The symbiotic relationship between rhizobia and legumes is critical for sustainable agriculture and has important economic and environmental implications. In this intricate process, rhizobial bacteria colonise plant roots and induce the formation of specialised plant organs, the nodules. Within these structures, rhizobia fix environmental nitrogen into ammonia, significantly reducing the demand for synthetic fertilisers. Multiple bacterial secretion systems (TXSS, Type X Secretion System) are involved in establishing this symbiosis, with T3SS being the most studied. While the Type 6 Secretion System (T6SS) is known as a “nanoweapon” commonly used by diderm (formerly gram-negative) bacteria for inter-bacterial competition and potentially manipulating eukaryotic cells, its precise role in legume symbiosis remains unclear. <i>Sinorhizobium fredii</i> USDA257, a fast-growing rhizobial strain capable of nodulating diverse legume plants, possesses a single T6SS cluster containing genes encoding structural components and potential effectors that could target plant cells and/or act as effector-immunity pairs. Our research reveals that this T6SS can be induced in nutrient-limited conditions and, more importantly, is essential for successful nodulation and competitive colonisation of <i>Glycine max</i> cv Pekin. Although the system did not demonstrate effectiveness in eliminating competing bacteria in vitro, its active presence within root nodules suggests a sophisticated role in symbiotic interactions that extends beyond traditional interbacterial competition.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70112","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70112","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The symbiotic relationship between rhizobia and legumes is critical for sustainable agriculture and has important economic and environmental implications. In this intricate process, rhizobial bacteria colonise plant roots and induce the formation of specialised plant organs, the nodules. Within these structures, rhizobia fix environmental nitrogen into ammonia, significantly reducing the demand for synthetic fertilisers. Multiple bacterial secretion systems (TXSS, Type X Secretion System) are involved in establishing this symbiosis, with T3SS being the most studied. While the Type 6 Secretion System (T6SS) is known as a “nanoweapon” commonly used by diderm (formerly gram-negative) bacteria for inter-bacterial competition and potentially manipulating eukaryotic cells, its precise role in legume symbiosis remains unclear. Sinorhizobium fredii USDA257, a fast-growing rhizobial strain capable of nodulating diverse legume plants, possesses a single T6SS cluster containing genes encoding structural components and potential effectors that could target plant cells and/or act as effector-immunity pairs. Our research reveals that this T6SS can be induced in nutrient-limited conditions and, more importantly, is essential for successful nodulation and competitive colonisation of Glycine max cv Pekin. Although the system did not demonstrate effectiveness in eliminating competing bacteria in vitro, its active presence within root nodules suggests a sophisticated role in symbiotic interactions that extends beyond traditional interbacterial competition.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信