Preparation of Diisooctyl Phosphate-Modified Ultra-Small Zinc Oxide Nanoparticle and Investigation of Its Tribological Properties as Additive in Alkylnaphthalene

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Zhenghao Li, Shuguang Fan, Ningning Song, Guangbin Yang, Chunli Zhang, Laigui Yu, Yujuan Zhang, Shengmao Zhang
{"title":"Preparation of Diisooctyl Phosphate-Modified Ultra-Small Zinc Oxide Nanoparticle and Investigation of Its Tribological Properties as Additive in Alkylnaphthalene","authors":"Zhenghao Li,&nbsp;Shuguang Fan,&nbsp;Ningning Song,&nbsp;Guangbin Yang,&nbsp;Chunli Zhang,&nbsp;Laigui Yu,&nbsp;Yujuan Zhang,&nbsp;Shengmao Zhang","doi":"10.1002/ls.1731","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>ZnO nanoparticle surface-modified by diisooctyl phosphate (P204) was prepared by liquid-phase in situ surface modification technique with zinc acetate as the raw material, P204 as the modifier and anhydrous ethanol as the solvent. The morphology and microstructure of the P204-ZnO nanoparticle were characterised by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrometry. Its thermal stability was evaluated by thermogravimetric analysis; and its tribological properties as the additive in alkylnaphthalene were evaluated with an SRV-5 friction and wear tester in reciprocal sliding mode. The results show that the as-prepared P204-ZnO nanoparticle has an average particle size of about 4 nm and a P204 content of about 42% (mass fraction); and the surface modifier is grafted onto the surface of ZnO nanoparticle by physical adsorption. With a mass fraction of 0.5% in alkylnaphthalene base oil, P204-ZnO nano-additive can mildly reduce the friction coefficient and drastically reduce the wear rate of the steel–steel sliding pair. This is due to the formation of the composite tribofilm via the adsorption and deposition of the nano-additive on rubbed steel surfaces as well as the tribochemical reactions of the modifier P204 yielding phosphate and of steel substrate yielding iron oxides. The as-formed composite tribofilm with a thickness of about 20 nm, consisting of phosphate and iron oxides as the binder as well as deposited ZnO nanoparticle as the filling phase, is responsible for the excellent friction-reducing and antiwear abilities of P204-ZnO nano-additive for the steel sliding contact.</p>\n </div>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"37 3","pages":"189-197"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1731","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ZnO nanoparticle surface-modified by diisooctyl phosphate (P204) was prepared by liquid-phase in situ surface modification technique with zinc acetate as the raw material, P204 as the modifier and anhydrous ethanol as the solvent. The morphology and microstructure of the P204-ZnO nanoparticle were characterised by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrometry. Its thermal stability was evaluated by thermogravimetric analysis; and its tribological properties as the additive in alkylnaphthalene were evaluated with an SRV-5 friction and wear tester in reciprocal sliding mode. The results show that the as-prepared P204-ZnO nanoparticle has an average particle size of about 4 nm and a P204 content of about 42% (mass fraction); and the surface modifier is grafted onto the surface of ZnO nanoparticle by physical adsorption. With a mass fraction of 0.5% in alkylnaphthalene base oil, P204-ZnO nano-additive can mildly reduce the friction coefficient and drastically reduce the wear rate of the steel–steel sliding pair. This is due to the formation of the composite tribofilm via the adsorption and deposition of the nano-additive on rubbed steel surfaces as well as the tribochemical reactions of the modifier P204 yielding phosphate and of steel substrate yielding iron oxides. The as-formed composite tribofilm with a thickness of about 20 nm, consisting of phosphate and iron oxides as the binder as well as deposited ZnO nanoparticle as the filling phase, is responsible for the excellent friction-reducing and antiwear abilities of P204-ZnO nano-additive for the steel sliding contact.

磷酸二异辛基改性超微氧化锌纳米颗粒的制备及其作为烷基萘添加剂的摩擦学性能研究
以醋酸锌为原料,P204为改性剂,无水乙醇为溶剂,采用液相原位表面改性技术制备了磷酸二异辛酯(P204)表面改性ZnO纳米颗粒。采用透射电子显微镜、x射线衍射和傅里叶变换红外光谱对P204-ZnO纳米颗粒的形貌和微观结构进行了表征。用热重分析评价了其热稳定性;在SRV-5型摩擦磨损试验机上对其作为烷基萘添加剂的摩擦学性能进行了评价。结果表明:制备的P204- zno纳米粒子平均粒径约为4 nm, P204含量约为42%(质量分数);通过物理吸附将表面改性剂接枝到ZnO纳米颗粒表面。P204-ZnO纳米添加剂在烷基萘基础油中质量分数为0.5%时,能温和降低钢-钢滑动副的摩擦系数,显著降低磨损率。这是由于纳米添加剂在摩擦钢表面的吸附和沉积,以及改性剂P204产生磷酸盐和钢基体产生氧化铁的摩擦化学反应,形成了复合摩擦膜。P204-ZnO纳米添加剂具有优异的钢材滑动接触减摩和抗磨性能,其厚度约为20 nm,以磷酸铁氧化物为粘结剂,沉积ZnO纳米颗粒为填充相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lubrication Science
Lubrication Science ENGINEERING, CHEMICAL-ENGINEERING, MECHANICAL
CiteScore
3.60
自引率
10.50%
发文量
61
审稿时长
6.8 months
期刊介绍: Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development. Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on: Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives. State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces. Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles. Gas lubrication. Extreme-conditions lubrication. Green-lubrication technology and lubricants. Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions. Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural. Modelling hydrodynamic and thin film lubrication. All lubrication related aspects of nanotribology. Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption. Bio-lubrication, bio-lubricants and lubricated biological systems. Other novel and cutting-edge aspects of lubrication in all lubrication regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信