Plant Invasion Increases Soil Microbial Biomass Carbon: Meta-Analysis and Empirical Tests

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Yuyang He, Junmei Li, Evan Siemann, Bo Li, Yunjian Xu, Yi Wang
{"title":"Plant Invasion Increases Soil Microbial Biomass Carbon: Meta-Analysis and Empirical Tests","authors":"Yuyang He,&nbsp;Junmei Li,&nbsp;Evan Siemann,&nbsp;Bo Li,&nbsp;Yunjian Xu,&nbsp;Yi Wang","doi":"10.1111/gcb.70109","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Soil organic carbon (SOC) is a vital component of the global carbon cycle. SOC influences soil fertility and structure and is controlled by various factors, including land use, land management practices, and climate change. Biological invasion is a significant yet controversial factor that can alter SOC levels. We conducted a meta-analysis of 445 observations from 61 published reports and followed up with field surveys to clarify the impact of plant invasion on SOC. Our results indicated that plant invasion leads to a 29% increase in microbial biomass carbon (MBC), which is one of the key fractions of SOC. Specifically, among different ecosystems, plant invasion caused MBC increases of 59% in estuaries, 59% in alluvial land, 53% in wetlands, and 80% in orchards. Furthermore, invasion by plants from the Asteraceae family resulted in a 33% increase in MBC, whereas invasion by plants from the Lythraceae family caused a 72% increase in MBC. Our field survey also revealed that plant invasion elevated the soil MBC content relative to the occurrence of native plants or bare ground. Overall, these findings suggest that plant invasion impacts soil carbon, especially by increasing MBC, which may in turn affect future invasions. These effects are influenced by the type of invasive species, ecosystem type, and soil layer depth, highlighting the complex role of biological invasion in the global carbon cycle.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 3","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70109","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Soil organic carbon (SOC) is a vital component of the global carbon cycle. SOC influences soil fertility and structure and is controlled by various factors, including land use, land management practices, and climate change. Biological invasion is a significant yet controversial factor that can alter SOC levels. We conducted a meta-analysis of 445 observations from 61 published reports and followed up with field surveys to clarify the impact of plant invasion on SOC. Our results indicated that plant invasion leads to a 29% increase in microbial biomass carbon (MBC), which is one of the key fractions of SOC. Specifically, among different ecosystems, plant invasion caused MBC increases of 59% in estuaries, 59% in alluvial land, 53% in wetlands, and 80% in orchards. Furthermore, invasion by plants from the Asteraceae family resulted in a 33% increase in MBC, whereas invasion by plants from the Lythraceae family caused a 72% increase in MBC. Our field survey also revealed that plant invasion elevated the soil MBC content relative to the occurrence of native plants or bare ground. Overall, these findings suggest that plant invasion impacts soil carbon, especially by increasing MBC, which may in turn affect future invasions. These effects are influenced by the type of invasive species, ecosystem type, and soil layer depth, highlighting the complex role of biological invasion in the global carbon cycle.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信