Suppressing the thermal conduction in glass–ceramic foams by controlling crystallization

IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Line Thomsen, Yuanzheng Yue, Martin B. Østergaard
{"title":"Suppressing the thermal conduction in glass–ceramic foams by controlling crystallization","authors":"Line Thomsen,&nbsp;Yuanzheng Yue,&nbsp;Martin B. Østergaard","doi":"10.1111/ijag.16694","DOIUrl":null,"url":null,"abstract":"<p>Glass-based insulating materials have attracted considerable attention owing to their tailorable properties. It is known that the thermal conductivity of glass ceramics can be greatly influenced by varying their crystallinity. However, the mechanism of such influence in glass–ceramic foams remains poorly understood. In this study, we demonstrate our new findings regarding the correlation between thermal conductivity and crystallinity in silicate glass–ceramic foams. The foams were produced by mixing ZrO<sub>2</sub>-containing soda-lime glass powder with CaCO<sub>3</sub> as foaming agent and foam them using a thermochemical approach. ZrO<sub>2</sub> was introduced as a nucleation agent. The crystallinity of the foams was varied by adjusting the heating protocol, i.e., by varying temperature, time, and number of heating cycles. The glass–ceramic foams exhibited relative crystallinities of &lt;30%. The identity of the crystalline phases in the glass–ceramic foams varies with crystallinity. Specifically, cristobalite diminished, but devitrite grew with increasing crystallinity. It was observed that the crystallinity had a nonmonotonic impact on the thermal conductivity of the glass–ceramic foams. The optimum crystallinity for achieving the lowest thermal conductivity was 8–10%, resulting in an approximately 20% lower thermal conductivity compared to noncrystalline. Our findings have implications for the future design of glass–ceramic foams.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16694","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Glass-based insulating materials have attracted considerable attention owing to their tailorable properties. It is known that the thermal conductivity of glass ceramics can be greatly influenced by varying their crystallinity. However, the mechanism of such influence in glass–ceramic foams remains poorly understood. In this study, we demonstrate our new findings regarding the correlation between thermal conductivity and crystallinity in silicate glass–ceramic foams. The foams were produced by mixing ZrO2-containing soda-lime glass powder with CaCO3 as foaming agent and foam them using a thermochemical approach. ZrO2 was introduced as a nucleation agent. The crystallinity of the foams was varied by adjusting the heating protocol, i.e., by varying temperature, time, and number of heating cycles. The glass–ceramic foams exhibited relative crystallinities of <30%. The identity of the crystalline phases in the glass–ceramic foams varies with crystallinity. Specifically, cristobalite diminished, but devitrite grew with increasing crystallinity. It was observed that the crystallinity had a nonmonotonic impact on the thermal conductivity of the glass–ceramic foams. The optimum crystallinity for achieving the lowest thermal conductivity was 8–10%, resulting in an approximately 20% lower thermal conductivity compared to noncrystalline. Our findings have implications for the future design of glass–ceramic foams.

通过控制晶化抑制玻璃陶瓷泡沫中的热传导
玻璃基绝缘材料由于其可定制的性能而引起了人们的广泛关注。众所周知,改变玻璃陶瓷的结晶度会极大地影响其导热性。然而,这种影响在玻璃陶瓷泡沫中的机制仍然知之甚少。在这项研究中,我们展示了我们关于硅酸盐玻璃陶瓷泡沫的导热性和结晶度之间关系的新发现。将含zro2的钠石灰玻璃粉与碳酸钙作为发泡剂混合,采用热化学方法进行泡沫制备。引入ZrO2作为成核剂。通过调整加热方案,即通过改变温度、时间和加热循环次数来改变泡沫的结晶度。玻璃陶瓷泡沫的相对结晶度为30%。玻璃陶瓷泡沫中结晶相的性质随结晶度的不同而不同。具体来说,方石英减少,而碎屑岩随着结晶度的增加而增加。结果表明,结晶度对泡沫玻璃的导热性能有非单调影响。实现最低热导率的最佳结晶度为8-10%,与非结晶相比,其热导率降低了约20%。我们的发现对玻璃陶瓷泡沫的未来设计具有启示意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Applied Glass Science
International Journal of Applied Glass Science MATERIALS SCIENCE, CERAMICS-
CiteScore
4.50
自引率
9.50%
发文量
73
审稿时长
>12 weeks
期刊介绍: The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信