{"title":"A Global Meta-Analysis of Land Use Change on Soil Mineral-Associated and Particulate Organic Carbon","authors":"Yuqing Zhao, Yulin Xu, Xinyu Cha, Peng Zhang, Yifan Li, Andong Cai, Zhenghu Zhou, Gaihe Yang, Xinhui Han, Chengjie Ren","doi":"10.1111/gcb.70111","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Separating soil organic carbon (SOC) into mineral-associated organic carbon (MAOC) and particulate organic carbon (POC) enables accurate prediction of SOC vulnerability to land use change (LUC). Here, we synthesize the responses of soil MAOC and POC to LUC, including land restoration and degradation, from 693 soil observations globally. We observed a large increase in soil MAOC and POC after restoration and a greater decline after degradation, but the magnitude and proportion of these two carbon fractions (fMAOC and fPOC) varied with LUC. POC, in comparison with MAOC, responded more sensitively to LUC, suggesting that POC was more vulnerable to environmental change. Using observed duration relationships, we found that the fraction of POC (fPOC) was higher at the early stage of restoration but lower at the late stage, projecting that soil carbon stability declined after short-term restoration but gradually increased after long-term restoration. Further analysis showed the context-dependent effects of LUC on carbon fractions: in arid or carbon-poor topsoil, restoration greatly increased soil carbon fractions and fPOC, while in humid or carbon-rich topsoil, degradation resulted in large decreases in POC and MAOC, especially POC. Overall, we highlight the importance of soil fractions, particularly POC, in predicting soil carbon stability and suggest that incorporating climate and initial carbon status in models of soil carbon dynamics helps to accurately predict future carbon sink potential.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 3","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70111","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Separating soil organic carbon (SOC) into mineral-associated organic carbon (MAOC) and particulate organic carbon (POC) enables accurate prediction of SOC vulnerability to land use change (LUC). Here, we synthesize the responses of soil MAOC and POC to LUC, including land restoration and degradation, from 693 soil observations globally. We observed a large increase in soil MAOC and POC after restoration and a greater decline after degradation, but the magnitude and proportion of these two carbon fractions (fMAOC and fPOC) varied with LUC. POC, in comparison with MAOC, responded more sensitively to LUC, suggesting that POC was more vulnerable to environmental change. Using observed duration relationships, we found that the fraction of POC (fPOC) was higher at the early stage of restoration but lower at the late stage, projecting that soil carbon stability declined after short-term restoration but gradually increased after long-term restoration. Further analysis showed the context-dependent effects of LUC on carbon fractions: in arid or carbon-poor topsoil, restoration greatly increased soil carbon fractions and fPOC, while in humid or carbon-rich topsoil, degradation resulted in large decreases in POC and MAOC, especially POC. Overall, we highlight the importance of soil fractions, particularly POC, in predicting soil carbon stability and suggest that incorporating climate and initial carbon status in models of soil carbon dynamics helps to accurately predict future carbon sink potential.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.