The thylakoid protein BCM1 sequesters antennae protein CP24 and CP29 within the grana cores thereby reducing their exposure to degradation under heat stress

IF 6.2 1区 生物学 Q1 PLANT SCIENCES
Qiuxin Li, Wenjing An, Jinfang Ma, Hongmei Zhang, Manfei Luo, Yafei Qi, Jörg Meurer, Daili Ji, Wei Chi
{"title":"The thylakoid protein BCM1 sequesters antennae protein CP24 and CP29 within the grana cores thereby reducing their exposure to degradation under heat stress","authors":"Qiuxin Li,&nbsp;Wenjing An,&nbsp;Jinfang Ma,&nbsp;Hongmei Zhang,&nbsp;Manfei Luo,&nbsp;Yafei Qi,&nbsp;Jörg Meurer,&nbsp;Daili Ji,&nbsp;Wei Chi","doi":"10.1111/tpj.70060","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Photosystem II (PSII) is one of the most thermosensitive components of photosynthetic apparatus in higher plants. Heat-inactivation of PSII may be followed by dissociation of antenna proteins, however, the fate and regulation mechanism of detached antenna proteins during this process remains unclear. Here, we investigate the regulation mechanism of two minor antenna proteins CP24 and CP29 during heat acclimation via the study on a thylakoid protein BCM1. BCM1 is distributed in both grana cores (GC) and stroma lamellae of thylakoids. However, heat stress induced its accumulation in grana cores but not stroma lamellae. Deficiency of BCM1 leads to the decline of plant resilience to heat stress, which results from the accelerated degradation of CP24 and CP29 <i>in vivo</i>. Heat stress induces a redistribution of CP24 and CP29 from the grana cores to the stroma lamellae, a shift that is exacerbated in <i>bcm1</i> mutants, suggesting that migration of detached antennae proteins between thylakoid subcompartments may contribute to their degradation during heat acclimation. As an integral thylakoid protein, BCM1 physically interacts with CP24 and CP29. We propose that BCM1 serves as a stabilizing “anchor”, effectively sequestering CP24 and CP29 within the grana cores thereby reducing their exposure to degradation in the stroma lamellae.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 5","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70060","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Photosystem II (PSII) is one of the most thermosensitive components of photosynthetic apparatus in higher plants. Heat-inactivation of PSII may be followed by dissociation of antenna proteins, however, the fate and regulation mechanism of detached antenna proteins during this process remains unclear. Here, we investigate the regulation mechanism of two minor antenna proteins CP24 and CP29 during heat acclimation via the study on a thylakoid protein BCM1. BCM1 is distributed in both grana cores (GC) and stroma lamellae of thylakoids. However, heat stress induced its accumulation in grana cores but not stroma lamellae. Deficiency of BCM1 leads to the decline of plant resilience to heat stress, which results from the accelerated degradation of CP24 and CP29 in vivo. Heat stress induces a redistribution of CP24 and CP29 from the grana cores to the stroma lamellae, a shift that is exacerbated in bcm1 mutants, suggesting that migration of detached antennae proteins between thylakoid subcompartments may contribute to their degradation during heat acclimation. As an integral thylakoid protein, BCM1 physically interacts with CP24 and CP29. We propose that BCM1 serves as a stabilizing “anchor”, effectively sequestering CP24 and CP29 within the grana cores thereby reducing their exposure to degradation in the stroma lamellae.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信