Cutting-Edge Insect Processing: Unlocking the Potential for Bacterial Reduction in Black Soldier Fly (Hermetia illucens) Protein

IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Patrick Sudwischer, Verena Böschen, Werner Sitzmann, Michael Hellwig
{"title":"Cutting-Edge Insect Processing: Unlocking the Potential for Bacterial Reduction in Black Soldier Fly (Hermetia illucens) Protein","authors":"Patrick Sudwischer,&nbsp;Verena Böschen,&nbsp;Werner Sitzmann,&nbsp;Michael Hellwig","doi":"10.1111/jfs.70012","DOIUrl":null,"url":null,"abstract":"<p>Insects are rising in importance as an alternative animal protein feed source for livestock and pets. Black soldier fly larvae (<i>Hermetia illucens</i>) are one of the most common species in this alternative sector. This is based on their nutritional value, growth potential, high bioconversion ratio, and low environmental impact. The bacterial population in the larvae has been characterized but not the impact of process technology on bacterial reduction. This study focuses on the effect of insect processing on bacterial levels, from the larvae up to the protein feed generated from them. The two common processes, dry and wet processing, are compared with regard to their individual impact on product hygiene. Significant differences were observed between the technologies used for insect processing. In the dry process, a reduction of bacteria in the range of 2.63–3.41 log CFU/g was observable. In wet processing, a higher potential to reduce bacteria in the products was found, resulting in a decrease in bacterial count of 5.68 log CFU/g over the entire process. Both systems have shown different reduction potentials at different process stages. The EU Regulation 142/2011 is set as a legal benchmark in this study. Additionally, we observed a slow recontamination of the protein feed in a storage study over 14 days.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"45 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfs.70012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfs.70012","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insects are rising in importance as an alternative animal protein feed source for livestock and pets. Black soldier fly larvae (Hermetia illucens) are one of the most common species in this alternative sector. This is based on their nutritional value, growth potential, high bioconversion ratio, and low environmental impact. The bacterial population in the larvae has been characterized but not the impact of process technology on bacterial reduction. This study focuses on the effect of insect processing on bacterial levels, from the larvae up to the protein feed generated from them. The two common processes, dry and wet processing, are compared with regard to their individual impact on product hygiene. Significant differences were observed between the technologies used for insect processing. In the dry process, a reduction of bacteria in the range of 2.63–3.41 log CFU/g was observable. In wet processing, a higher potential to reduce bacteria in the products was found, resulting in a decrease in bacterial count of 5.68 log CFU/g over the entire process. Both systems have shown different reduction potentials at different process stages. The EU Regulation 142/2011 is set as a legal benchmark in this study. Additionally, we observed a slow recontamination of the protein feed in a storage study over 14 days.

Abstract Image

尖端昆虫加工:解锁黑兵蝇(Hermetia illucens)蛋白细菌减少的潜力
昆虫作为家畜和宠物的另一种动物蛋白饲料来源的重要性正在上升。黑兵蝇幼虫(Hermetia illucens)是这一替代性领域最常见的物种之一。这是基于它们的营养价值、生长潜力、高生物转化率和低环境影响。对幼虫的细菌数量进行了表征,但对工艺技术对细菌减少的影响尚不清楚。本研究的重点是昆虫加工对细菌水平的影响,从幼虫到由它们产生的蛋白质饲料。两种常见的工艺,干法和湿法,就其对产品卫生的个别影响进行了比较。昆虫加工技术之间存在显著差异。在干燥过程中,细菌减少量在2.63-3.41 log CFU/g范围内。在湿法处理中,发现产品中细菌减少的潜力更高,导致整个过程中细菌数量减少5.68 log CFU/g。两种体系在不同工艺阶段表现出不同的还原电位。欧盟法规142/2011被设定为本研究的法律基准。此外,在14天的储存研究中,我们观察到蛋白质饲料的缓慢再污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Food Safety
Journal of Food Safety 工程技术-生物工程与应用微生物
CiteScore
5.30
自引率
0.00%
发文量
69
审稿时长
1 months
期刊介绍: The Journal of Food Safety emphasizes mechanistic studies involving inhibition, injury, and metabolism of food poisoning microorganisms, as well as the regulation of growth and toxin production in both model systems and complex food substrates. It also focuses on pathogens which cause food-borne illness, helping readers understand the factors affecting the initial detection of parasites, their development, transmission, and methods of control and destruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信