Kuiming Liu, Junzheng Zhao, Chun Zhu, Haibo Li, Yang Yang, Zhigang Tao
{"title":"Experimental study on the control mechanism of 2G-NPR anchor cables in the anti-dip slope instability model","authors":"Kuiming Liu, Junzheng Zhao, Chun Zhu, Haibo Li, Yang Yang, Zhigang Tao","doi":"10.1007/s10064-025-04168-4","DOIUrl":null,"url":null,"abstract":"<div><p>As national energy demand increases, mining activities are extending deeper, raising concerns over the instability of anti-dip slopes. NPR anchor cables, known for high strength and ductility, address the limitations of traditional cables and are more suitable for deep slope support. Using the slope failure at the Changshanhao Gold Mine as a reference, based on the similarity ratio theory, we conducted model tests using the “Engineering Disaster Model Testing System” to compare disaster prevention effect between 2G-NPR and traditional anchor cables. The experimental results indicate that 2G-NPR cable can effectively redistribute external loads, achieving a stable constant resistance of approximately 35.2 N and demonstrating excellent adaptability under complex conditions. A thorough analysis was conducted on the stress-strain, temperature, and displacement fields throughout the slope failure process. The evolution of the monitoring data was summarized, and the failure patterns under 2G-NPR and traditional anchor cable support were compared. The study revealed the failure mechanism of anti-dip slopes and the working principles of the 2G-NPR cable in landslide control. A comprehensive evaluation of the application effectiveness of 2G-NPR anchor cables in landslide hazard mitigation was conducted, providing insights and guidance for the use of NPR anchor cables in anti-dip slope control projects.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04168-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
As national energy demand increases, mining activities are extending deeper, raising concerns over the instability of anti-dip slopes. NPR anchor cables, known for high strength and ductility, address the limitations of traditional cables and are more suitable for deep slope support. Using the slope failure at the Changshanhao Gold Mine as a reference, based on the similarity ratio theory, we conducted model tests using the “Engineering Disaster Model Testing System” to compare disaster prevention effect between 2G-NPR and traditional anchor cables. The experimental results indicate that 2G-NPR cable can effectively redistribute external loads, achieving a stable constant resistance of approximately 35.2 N and demonstrating excellent adaptability under complex conditions. A thorough analysis was conducted on the stress-strain, temperature, and displacement fields throughout the slope failure process. The evolution of the monitoring data was summarized, and the failure patterns under 2G-NPR and traditional anchor cable support were compared. The study revealed the failure mechanism of anti-dip slopes and the working principles of the 2G-NPR cable in landslide control. A comprehensive evaluation of the application effectiveness of 2G-NPR anchor cables in landslide hazard mitigation was conducted, providing insights and guidance for the use of NPR anchor cables in anti-dip slope control projects.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.