Kashan Ali Gillani, Ahmed M. Fallatah, Mohamed M. Ibrahim, Abdulraheem S. A. Almalki, Hafiz Muhammad Tahir Farid, Muhammad Aslam, Zeinhom M. El-Bahy
{"title":"Facile fabrication of NbTe2 doped with Ag via hydrothermal route for approaching the high performance toward supercapacitor applications","authors":"Kashan Ali Gillani, Ahmed M. Fallatah, Mohamed M. Ibrahim, Abdulraheem S. A. Almalki, Hafiz Muhammad Tahir Farid, Muhammad Aslam, Zeinhom M. El-Bahy","doi":"10.1140/epjp/s13360-025-06058-w","DOIUrl":null,"url":null,"abstract":"<div><p>Energy crisis and greenhouse effects are reaching alarming levels, the development of active materials that are both environment friendly and economically viable is essential for energy storing technologies. Currently, supercapacitors (SC<sub>s</sub>) are a best type of energy storage devices that attained significant attention from scientists. The fabrication of composites using transition metal with chalcogenides possessed high specific capacitance, structural integrity, maximum energy efficiency, low cost, higher power density and energy density. The hydrothermal route was utilized to developed niobium telluride (NbTe<sub>2</sub>) and silver-doped niobium telluride (Ag-NbTe<sub>2</sub>). The Ag-NbTe<sub>2</sub> nanoflakes were examined through scanning electron microscopy (SEM) to identify structural morphology of NbTe<sub>2</sub> nanoparticles incorporated inside transition metal (Ag) which demonstrated the nanoflakes morphology. The increased surface area of Ag-NbTe<sub>2</sub> was confirmed through the BET as computed value of pristine NbTe<sub>2</sub> was 21 cm<sup>2</sup> g<sup>−1</sup> and with silver doped (Ag-NbTe<sub>2</sub>) was 51 cm<sup>2</sup> g<sup>−1</sup>. The examination on energy storing devices by using 3 M KOH electrolyte to conduct electrochemical impedance spectroscopy (EIS), galvanic charge–discharge and cyclic voltammetry experiments. Moreover, the fabricated material Ag-NbTe<sub>2</sub> nanoflakes displayed exceptional charge–discharge cycling characteristics, with specific capacitance (<i>C</i><sub>s</sub>) 1774 F g<sup>−1</sup> at current density (<i>j</i><sub>d</sub>) 1 A g<sup>−1</sup>. By analyzing the EIS graph successfully identified the solution resistance (<i>R</i><sub>s</sub>) as 2.34 Ω with charge transfer resistance (<i>R</i><sub>ct</sub>) as 0.77 Ω. Further, results of our research provide a cost-efficient, highly effective and easily expandable approach for producing nanocomposites by hydrothermal techniques. This fabricated material exhibited enhanced electrochemical performance, making them highly suitable for utilization in supercapacitors (SC<sub>s</sub>) and other energy storage devices.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06058-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Energy crisis and greenhouse effects are reaching alarming levels, the development of active materials that are both environment friendly and economically viable is essential for energy storing technologies. Currently, supercapacitors (SCs) are a best type of energy storage devices that attained significant attention from scientists. The fabrication of composites using transition metal with chalcogenides possessed high specific capacitance, structural integrity, maximum energy efficiency, low cost, higher power density and energy density. The hydrothermal route was utilized to developed niobium telluride (NbTe2) and silver-doped niobium telluride (Ag-NbTe2). The Ag-NbTe2 nanoflakes were examined through scanning electron microscopy (SEM) to identify structural morphology of NbTe2 nanoparticles incorporated inside transition metal (Ag) which demonstrated the nanoflakes morphology. The increased surface area of Ag-NbTe2 was confirmed through the BET as computed value of pristine NbTe2 was 21 cm2 g−1 and with silver doped (Ag-NbTe2) was 51 cm2 g−1. The examination on energy storing devices by using 3 M KOH electrolyte to conduct electrochemical impedance spectroscopy (EIS), galvanic charge–discharge and cyclic voltammetry experiments. Moreover, the fabricated material Ag-NbTe2 nanoflakes displayed exceptional charge–discharge cycling characteristics, with specific capacitance (Cs) 1774 F g−1 at current density (jd) 1 A g−1. By analyzing the EIS graph successfully identified the solution resistance (Rs) as 2.34 Ω with charge transfer resistance (Rct) as 0.77 Ω. Further, results of our research provide a cost-efficient, highly effective and easily expandable approach for producing nanocomposites by hydrothermal techniques. This fabricated material exhibited enhanced electrochemical performance, making them highly suitable for utilization in supercapacitors (SCs) and other energy storage devices.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.