On the degenerate Whittaker space for GL4(o2)

IF 0.7 2区 数学 Q2 MATHEMATICS
Ankita Parashar , Shiv Prakash Patel
{"title":"On the degenerate Whittaker space for GL4(o2)","authors":"Ankita Parashar ,&nbsp;Shiv Prakash Patel","doi":"10.1016/j.jpaa.2025.107921","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>o</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> be a finite principal ideal local ring of length 2. For a representation <em>π</em> of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>, the degenerate Whittaker space <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>N</mi><mo>,</mo><mi>ψ</mi></mrow></msub></math></span> is a representation of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. We describe <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>N</mi><mo>,</mo><mi>ψ</mi></mrow></msub></math></span> explicitly for an irreducible strongly cuspidal representation <em>π</em> of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><msub><mrow><mi>o</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. This description verifies a special case of a conjecture of Prasad. We also prove that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>N</mi><mo>,</mo><mi>ψ</mi></mrow></msub></math></span> is a multiplicity free representation.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 5","pages":"Article 107921"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492500060X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let o2 be a finite principal ideal local ring of length 2. For a representation π of GL4(o2), the degenerate Whittaker space πN,ψ is a representation of GL2(o2). We describe πN,ψ explicitly for an irreducible strongly cuspidal representation π of GL4(o2). This description verifies a special case of a conjecture of Prasad. We also prove that πN,ψ is a multiplicity free representation.
关于 GL4(o2) 的退化惠特克空间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信