Wuwei Mo , Yao Xiao , Yushen Huang , Peng Sun , Ya Li , Xiaoyu Zheng , Qiang Lu , Bo Li , Yuling Liu , Yong Du
{"title":"Active learning-based alloy design strategy for improving the strength-ductility balance of Al-Mg-Zn alloys","authors":"Wuwei Mo , Yao Xiao , Yushen Huang , Peng Sun , Ya Li , Xiaoyu Zheng , Qiang Lu , Bo Li , Yuling Liu , Yong Du","doi":"10.1016/j.matdes.2025.113772","DOIUrl":null,"url":null,"abstract":"<div><div>Al-Mg-Zn alloys, designed to combine the formability of 5xxx alloys with the high strength of 7xxx alloys, still face challenges in achieving an optimal strength-ductility balance. This study presents an active learning-based alloy design strategy to guide experiments aimed at enhancing the strength-ductility balance in Al-Mg-Zn alloys. Firstly, a sub-dataset comprising ultimate tensile strength (UTS) and elongation (EL) data with optimal generalization ability was identified from the small and disordered Al-Mg-Zn dataset using the bagging method. Subsequently, the bagging model of this sub-dataset was employed to construct a Pareto front based on the Upper Confidence Bound for UTS and EL, providing guidance for alloy composition design. Through experimental validation and iterative optimization, the strength-ductility balance of Al-Mg-Zn alloys was significantly improved, with the designed Al-5.27Mg-2.8Zn-0.44Cu-0.19Ag-0.15Sc-0.05Mn-0.01Zr alloy (wt.%) exhibiting superior mechanical properties with the measured UTS of 602 MPa and EL of 15.1 %. Microstructural analysis using SEM, EBSD and TEM revealed that the improved strength-ductility balance of the alloy is attributed to its optimized composition, which results in the minimal micron phases, numerous fine Al<sub>3</sub>Sc particles, low-recrystallization grains, and a high density of precipitates. This active learning-based design strategy offering a novel approach for material development in systems with limited data.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"252 ","pages":"Article 113772"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525001923","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Al-Mg-Zn alloys, designed to combine the formability of 5xxx alloys with the high strength of 7xxx alloys, still face challenges in achieving an optimal strength-ductility balance. This study presents an active learning-based alloy design strategy to guide experiments aimed at enhancing the strength-ductility balance in Al-Mg-Zn alloys. Firstly, a sub-dataset comprising ultimate tensile strength (UTS) and elongation (EL) data with optimal generalization ability was identified from the small and disordered Al-Mg-Zn dataset using the bagging method. Subsequently, the bagging model of this sub-dataset was employed to construct a Pareto front based on the Upper Confidence Bound for UTS and EL, providing guidance for alloy composition design. Through experimental validation and iterative optimization, the strength-ductility balance of Al-Mg-Zn alloys was significantly improved, with the designed Al-5.27Mg-2.8Zn-0.44Cu-0.19Ag-0.15Sc-0.05Mn-0.01Zr alloy (wt.%) exhibiting superior mechanical properties with the measured UTS of 602 MPa and EL of 15.1 %. Microstructural analysis using SEM, EBSD and TEM revealed that the improved strength-ductility balance of the alloy is attributed to its optimized composition, which results in the minimal micron phases, numerous fine Al3Sc particles, low-recrystallization grains, and a high density of precipitates. This active learning-based design strategy offering a novel approach for material development in systems with limited data.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.