An enhanced substation equipment detection method based on distributed federated learning

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhuyun Li , Qiutong Qin , Yingyi Yang , Xiaoming Mai , Yuya Ieiri , Osamu Yoshie
{"title":"An enhanced substation equipment detection method based on distributed federated learning","authors":"Zhuyun Li ,&nbsp;Qiutong Qin ,&nbsp;Yingyi Yang ,&nbsp;Xiaoming Mai ,&nbsp;Yuya Ieiri ,&nbsp;Osamu Yoshie","doi":"10.1016/j.ijepes.2025.110547","DOIUrl":null,"url":null,"abstract":"<div><div>The inefficiency of manual inspections in substations struggles to meet increasing workloads amid power grid expansion, necessitating intelligent solutions for equipment monitoring. This study addresses two key challenges: detecting diverse equipment under scale variations, occlusions, and real-time constraints, and ensuring data privacy given geographically dispersed, sensitive substation data. We propose CWA-YOLO, a detection framework integrating multi-scale feature fusion and an enhanced small-object detection head into YOLOv8 to improve accuracy across variable conditions. Additionally, a federated learning (FL) system tailored for substations enables collaborative model training without centralized data sharing, addressing privacy concerns and data heterogeneity. The framework’s novelty lies in its dual focus: optimizing detection performance through architectural enhancements and ensuring secure, efficient distributed learning. CWA-YOLO achieves mAP scores of 0.918 ([email protected]) and 0.623 ([email protected]:0.95), surpassing YOLOv8l and YOLOv7l by 6.5% and 7.49%, respectively, in accuracy. For FL, the Federated Adaptive (FedAdp) algorithm reduces communication rounds by 62% compared to Federated Averaging (FedAvg), maintaining near-centralized accuracy while preserving data locality. These results confirm the method’s effectiveness in improving substation equipment recognition securely and efficiently.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"166 ","pages":"Article 110547"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525000985","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The inefficiency of manual inspections in substations struggles to meet increasing workloads amid power grid expansion, necessitating intelligent solutions for equipment monitoring. This study addresses two key challenges: detecting diverse equipment under scale variations, occlusions, and real-time constraints, and ensuring data privacy given geographically dispersed, sensitive substation data. We propose CWA-YOLO, a detection framework integrating multi-scale feature fusion and an enhanced small-object detection head into YOLOv8 to improve accuracy across variable conditions. Additionally, a federated learning (FL) system tailored for substations enables collaborative model training without centralized data sharing, addressing privacy concerns and data heterogeneity. The framework’s novelty lies in its dual focus: optimizing detection performance through architectural enhancements and ensuring secure, efficient distributed learning. CWA-YOLO achieves mAP scores of 0.918 ([email protected]) and 0.623 ([email protected]:0.95), surpassing YOLOv8l and YOLOv7l by 6.5% and 7.49%, respectively, in accuracy. For FL, the Federated Adaptive (FedAdp) algorithm reduces communication rounds by 62% compared to Federated Averaging (FedAvg), maintaining near-centralized accuracy while preserving data locality. These results confirm the method’s effectiveness in improving substation equipment recognition securely and efficiently.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信